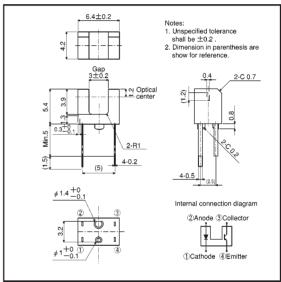
Photointerrupter, double-layer mold type RPI-352

The RPI-352 is a compact, double-layer mold photointerrupter.

Applications

Floppy disk drives

Printers


Facsimiles

VCR

Features

- 1) Positioning pin enables precision mounting.
- 2) Gap between emitter and detector is 3.0 mm.
- 3) Compact

External dimensions (Units: mm)

●Absolute maximum ratings (Ta = 25°C)

Parameter		Symbol	Limits	Unit
Input(LED)	Forward current	lF	50	mA
	Reverse voltage	VR	5	٧
	Power dissipation	P⊳	80	mW
Output (photo- (transistor)	Collector-emitter voltage	VCEO	30	V
	Emitter-collector voltage	Veco	4.5	V
	Collector current	lc	30	mA
	Collector power dissipation	Pc	80	mW
Operating temperature		Topr	-25~ + 85	°
Storage temperature		Tstg	−30~+85	င

Sensors RPI-352

Electrical and optical characteristics (Ta = 25°C)

Parameter		Symbol	Min.	Тур.	Мах.	Unit	Conditions
Input charac- teristics	Forward voltage	VF	_	1.3	1.6	٧	I==50mA
	Reverse current	lR	_	_	10	μΑ	V _R =5V
Output characteristics	Dark current	ICEO	_	_	0.5	μΑ	VcE=10V
	Peak sensitivity wavelength	λР	_	800	_	nm	_
Transfer charac- teristics	Collector current	lc	0.2	1.0	_	mA	V _{CE} =5V, I _F =20mA
	Collector-emitter saturation voltage	V _{CE(sat)}	_	_	0.4	٧	I _F =20mA, I _C =0.1mA
	Response time	tr • tf	_	10	_	μS	Vcc=5V, I==20mA, RL=100 Ω

Electrical and optical characteristic curves

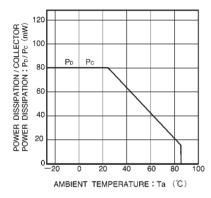


Fig.1 Power dissipation / collector power dissipation vs. ambient temperature

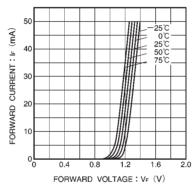


Fig.2 Forward current vs. forward voltage

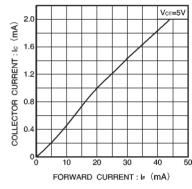


Fig.3 Collector current vs. forward current

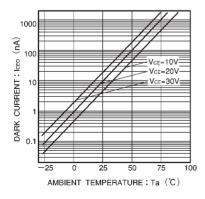


Fig.4 Dark current vs. ambient temperature

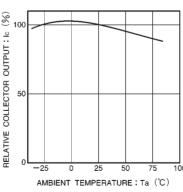


Fig.5 Relative output vs. ambient temperature

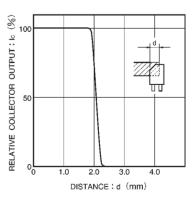
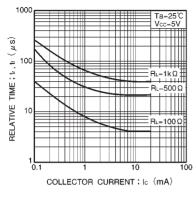



Fig.6 Relative output vs. distance

Sensors RPI-352

(YE) 30 40 60 80 100 AMBIENT TEMPERATURE: Ta (°C)

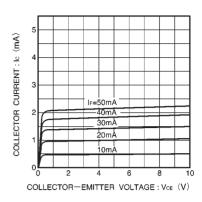
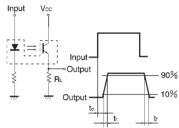



Fig.7 Response time vs. collector current

Fig.8 Forward current falloff

Fig.9 Output characteristics

- ta: Delay time
- tr: Rise time (time for output current to rise from 10% to 90% of peak current)
- tr: Fall time (time for output current to fall from 90% to 10% of peak current)

Fig.10 Response time measurement circuit