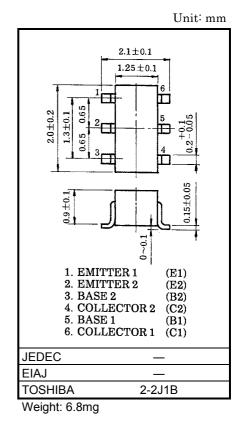

TOSHIBA Transistor Silicon PNP Epitaxial Type (PCT Process)

RN2961,RN2962,RN2963,RN2964,RN2965,RN2966

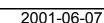
Switching, Inverter Circuit, Interface Circuit And Driver Circuit Applications


- Including two devices in US6 (ultra super mini type with 6 leads)
- With built-in bias resistors
- Simplify circuit design
- Reduce a quantity of parts and manufacturing process
- Complementary to RN1961~RN1966

Equivalent Circuit and Bias Resistor Values

Maximum Ratings (Ta = 25°C)

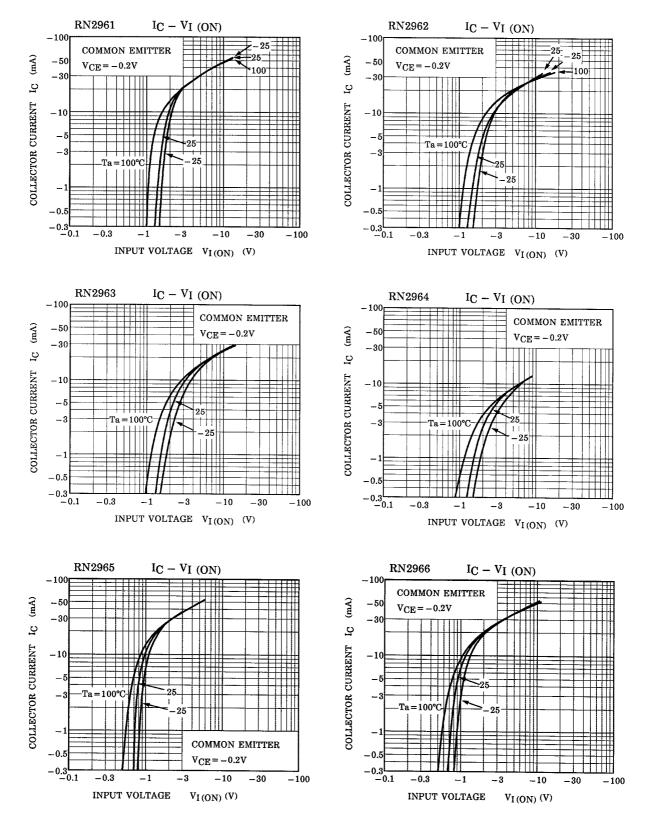
Type No.	R1 (kΩ)	R2 (kΩ)			
RN2961	4.7	4.7			
RN2962	10	10			
RN2963	22	22			
RN2964	47	47			
RN2965	2.2	47			
RN2966	4.7	47			



Equivalent Circuit (Top View)

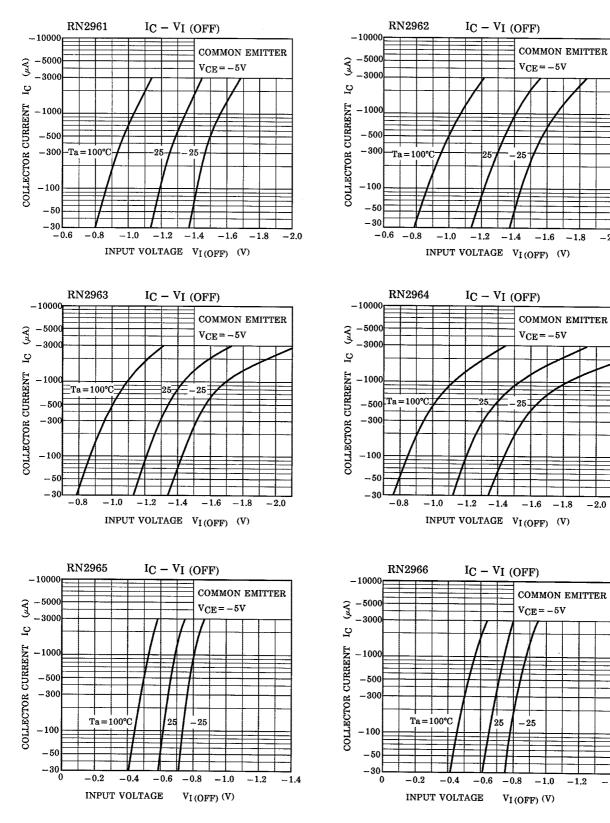
Characteristic Symbol Unit Rating -50 V Collector-base voltage V_{CBO} RN2961~2966 V Collector-emitter voltage VCEO -50 RN2961~2964 -10 RN2965, 2966 -5 -100 Collector current Ic mΑ Collector power dissipation Pc* 200 mW Junction temperature 150 °C Τj Storage temperature range Tstg -55~150 °C

 $\begin{array}{c} 6 & 5 & 4 \\ Q_1 & Q_2 \\ Q_2 & Q_2 \\ Q_2 & Q_2 \\ Q_1 & Q_2 \\ Q_2 & Q_2 \\ Q_2 & Q_2 \\ Q_1 & Q_2 \\ Q_2 & Q_2 \\ Q_2 & Q_2 \\ Q_1 & Q_2 \\ Q_2 & Q_2 \\ Q_2 & Q_2 \\ Q_1 & Q_2 \\ Q_2 & Q_2 \\ Q_1 & Q_2 \\ Q_2 & Q_2 \\ Q_2 & Q_2 \\ Q_1 & Q_2 \\ Q_2 & Q_2 \\ Q_2 & Q_2 \\ Q_1 & Q_2 \\ Q_2 & Q_2 \\ Q_2 & Q_2 \\ Q_1 & Q_2 \\ Q_2 & Q_2 \\$


* : Total rating

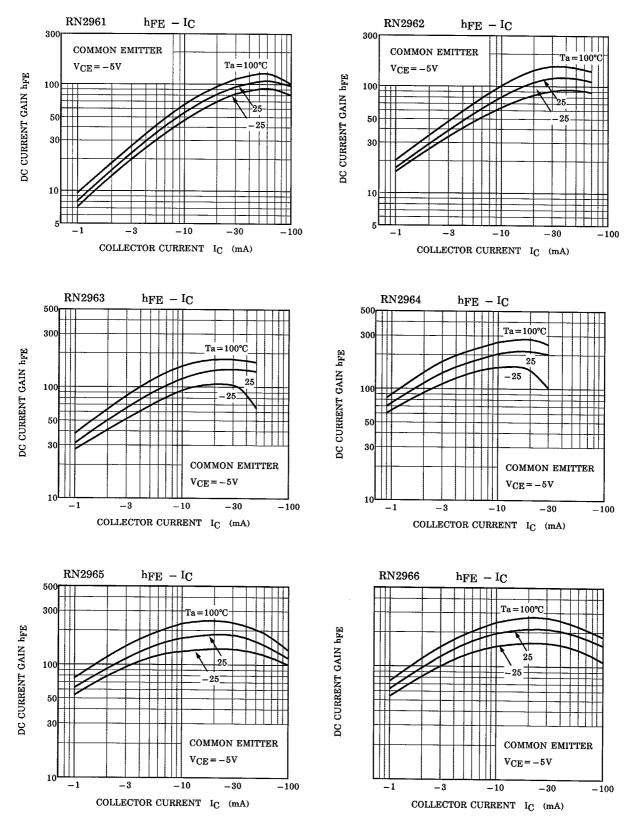
Electrical Characteristics (Ta = 25°C) (Q1, Q2 Common)

Characteristic		Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Collector cut-off current	RN2961~2966	I _{CBO}	—	$V_{CB} = -50V, I_E = 0$	—	—	-100	nA
		I _{CEO}	_	$V_{CE} = -50V, I_B = 0$	—	_	-500	
	RN2961	I _{EBO}	_	- V _{EB} = -10V, I _C = 0	-0.82	_	-1.52	mA
	RN2962		_		-0.38	_	-0.71	
Emitter cut-off current	RN2963		_		-0.17	_	-0.33	
	RN2964		_		-0.082	_	-0.15	
	RN2965		_	V _{EB} = −5V, I _C = 0	-0.078	_	-0.145	
	RN2966		_		-0.074	_	-0.138	
	RN2961	hFE	_	V _{CE} = -5V I _C = -10mA	30	_	_	· ·
	RN2962		_		50	_	_	
	RN2963		_		70	_	_	
DC current gain	RN2964		_		80	_	_	
	RN2965		_		80	_	_	
	RN2966		_		80	_	_	
Collector-emitter saturation voltage	RN2961~2966	V _{CE (sat)}	_	$I_{\rm C} = -5mA$ $I_{\rm B} = -0.25mA$	_	-0.1	-0.3	V
	RN2961	V _{I (ON)}	_	V _{CE} = -0.2V I _C = -5mA	-1.1	_	-2.0	V
	RN2962		_		-1.2	_	-2.4	
	RN2963		_		-1.3	_	-3.0	
Input voltage (ON)	RN2964		_		-1.5	_	-5.0	
	RN2965		_		-0.6	_	-1.1	
	RN2966		_		-0.7	_	-1.3	
	RN2961~2964	V _{I (OFF)}	_	V _{CE} = -5V, I _C = -0.1mA	-1.0	_	-1.5	v
Input voltage (OFF)	RN2965, 2966		_		-0.5	_	-0.8	
Translation frequency	RN2961~2966	fT	_	V _{CE} = -10V, I _C = -5mA	_	200	_	MHz
Collector output capacitance	RN2961~2966	C _{ob}	_	V _{CB} = -10V, I _E = 0 f = 1MHz	_	3	6	pF
	RN2961	R1	—		3.29	4.7	6.11	kΩ
	RN2962		_		7	10	13	
la sud as states	RN2963		_		15.4	22	28.6	
Input resistor	RN2964		_		32.9	47	61.1	
	RN2965		_		2.2	2.86		
	RN2966		_		3.29	4.7	6.11	
	RN2961~2964	R1/R2	_		0.9	1.0	1.1	_
Resistor ratio	RN2965		_		0.0421	0.0468	0.0515	
	RN2966		_		0.09	0.1	0.11	


(Q1, Q2 Common)

-2.0

-2.0


(Q1, Q2 Common)

-1.4

TOSHIBA

(Q1, Q2 Common)

Type Name	Marking
RN2961	Type Name TYPE YYA TT
RN2962	
RN2963	Type Name YYC
RN2964	Type Name YYD UUU
RN2965	Type Name YYE
RN2966	Type Name YYF THE

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.