

3.0V, SOTinyTM 0.4 Ω Dual SPDT Analog Switch

Features

· CMOS Technology for Bus and Analog Applications

• Low On-Resistance: 0.4Ω (+2.7V Supply)

• Wide V_{CC} Range: +1.5V to +3.6V

• Low Power Consumption : 5µW

• Rail-to-Rail switching throughout Signal Range

• Fast Switching Speed: 20ns max. at 3.3V

• High Off Isolation: -27dB at 100 KHz

 –41dB (100 KHz) Crosstalk Rejection Reduces Signal Distortion

• Extended Industrial Temperature Range: -40°C to 85°C

· Packaging:

- Pb-free & Green, 12-pin TDFN (ZG)

- Pb-free & Green, 12-pin TDFN (ZE)

Applications

• Cell Phones

PDAs

· Portable Instrumentation

· Battery Powered Communications

· Computer Peripherals

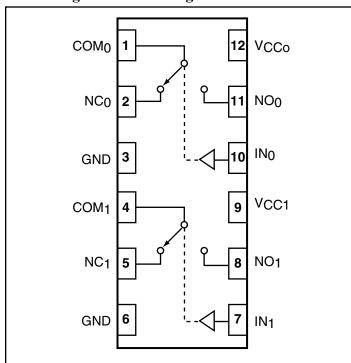
Pin Description

Pin Number	Name	Description
8, 11	NOx	Data Port (Normally Open)
3, 6	GND	Ground
2, 5	NCx	Data Port (Normally Closed)
1, 4	COMx	Common Output/Data Port
9, 12	V _{CC} x	Postive Power Supply ⁽²⁾
7, 10	INx	Logic Control

Notes:

1. x = 0 or 1

 V_{CC0} ad V_{CC1} are not internally connected. Each must be powered seperately.


Description

The PI3A3160 is a fast Dual single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Specified over a wide operating power supply voltage range, +1.5V to +3.6V, the switch has an On-Resistance of 0.4Ω at 3.0V.

Control inputs, IN, tolerates input drive signals up to 3.3V, independent of supply voltage.

PI3A3160 is a lower voltage and On-Resistance replacement for the PI5A3158.

Block Diagram / Pin Configuration

Function Table

Logic Input	Function
0	NCx Connected to COMx
1	NOx Connected to COMx

Absolute Maximum Ratings

Voltages Referenced to GND	
V _{CC}	0.5V to +3.6V
V _{IN} , V _{COM} , V _{NC} , V _{NO} ⁽¹⁾ or 30mA, whichever occurs first	$-0.5V$ to $V_+ + 0.3V$
Current (any terminal)	±200mA
Peak Current, COM, NO, NC (Pulsed at 1ms, 10% duty cycle)	±400mA

Thermal Information

Continuous Power Dissipation	
SOT23 (derate 7.1mW/°C above +70°C)	0.5W
Storage Temperature	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Note 1: Signals on NC, NO, COM, or IN exceeding V_{CC} or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +3.3V Supply

 $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽¹⁾	Typ. (2)	Max. (1)	Units
Analog Switch	-			-		_	
Analog Signal Range (3)	V _{ANALOG}		Full	0		V _{CC}	V
On Resistance	Dov		25		0.4	0.45	
On Resistance	R _{ON}	$V_{CC} = 2.7V$, $I_{COM} = 100 \text{mA}$,	Full			0.6	
On-Resistance Match	AD	V_{NO} or $V_{NC} = +1.5V$	25			0.08	Ω
Between Channels ⁽⁴⁾	ΔR_{ON}	THO STANCE STANCE	Full			0.09	
(5)		$V_{CC} = 2.7V$,	25			0.1	
On-Resistance Flatness ⁽⁵⁾	R _{FLAT(ON)}	$I_{COM} = 100 \text{mA},$ V_{NO} or $V_{NC} = 0.8 \text{V}, 2.0 \text{V}$	Full			0.1	
NO or NC Off Leakage	I _{NO(OFF)} or	$V_{CC} = 3.3V$,	25	-100		100	
Current ⁽⁶⁾	I _{NC(OFF)}	$V_{COM} = 0V,$ V_{NO} or $V_{NC} = +2.0V$	Full	-400		400	,,
COM On Leakage Cur-		$V_{CC} = 3.3V$,	25	-200		200	nA
rent ⁽⁶⁾	I _{COM(ON)}	$V_{COM} = +2.0V,$ $V_{NO} \text{ or } V_{NC} = +2.0V$	Full	-400	-	400	

Electrical Specifications - Single +3.3V Supply

 $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Description	Param- eters	Test Conditions	Temp (°C)	Min. ⁽¹⁾	Typ.(2)	Max. ⁽¹⁾	Units
Logic Input	-						
Input High Voltage	$V_{ m IH}$	Guaranteed logic High Level	Full	1.4			V
Input Low Voltage	$V_{ m IL}$	Guaranteed logic Low Level				0.5	V
Input Current with Voltage High	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$		-1		1	
Input Current with Voltage Low	I _{INL}	$V_{IN} = 0.5V$, all other = 1.4V		-1		1	μΑ
Dynamic							
т о т	,		25			20	20 25 12 15 ns
$\begin{array}{ccc} \text{Turn-On Time} & & t_{ON} \\ \\ \text{Turn-Off Time} & & t_{OFF} \end{array}$	ton	$V_{CC} = 3.3V$, V_{NO} or	Full			25	
	4	$V_{NC} = 2.0V$, Figure 1	25			12	
	UOFF		Full			15	
		$V_{NO} \text{ or } V_{NC} = 1.5V,$ 25	25	1	12		
Break-Before-Make	t _{BBM}	$R_L = 50\Omega$, $C_L = 35$ pF, See Figure 8	Full	1			
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ Ω, Figure 2	25		100		pC
Off Isolation ⁽⁷⁾	O _{IRR}	$R_L = 50\Omega$, $f = 100$ KHz, Figure	e 3		-27		dB
Cross Talk ⁽⁸⁾	X _{TALK}	$R_L = 50\Omega$, $f = 100$ KHz, Figure	4		-41		uБ
NC or NO Capacitance	C _(OFF)	f = 1MHz, Figure 5			56		
COM Off Capacitance	C _{COM(OFF)}	1 – IMITZ, FIGURE 3			56		pF
COM On Capacitance	C _{COM(ON)}	f = 1MHz, Figure 6			160		
Supply							
Power-Supply Range	V_{CC}		Full	1.5		3.6	V
Positve Supply Current	I_{CC}	$V_{CC} = 3.6V, V_{IN} = 0V \text{ or } V_{CC}$	25			0.3	μΑ

Notes:

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NC})]$. See Figure 4.
- 8. Between any two switches. See Figure 5.

Electrical Specifications - Single +2.5V Supply (V_{CC} = +2.5V \pm 10%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)

Description	Parameters	Test Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ.(2)	Max. ⁽¹⁾	Units
Analog Switch	-		-				
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V _{CC}	V
	D		25			0.5	
On Resistance	R _{ON}	$V_{CC} = 2.5 \text{V}, I_{COM} = 80 \text{mA},$	Full			0.55	
On-Resistance Match	AD	V_{NO} or $V_{NC} = 1.8V$	25			0.09	0
Between Channels (4)	$\Delta R_{ m ON}$		Full			0.09	Ω
On-Resistance Flatness ⁽⁵⁾	D	$V_{CC} = 2.5V, I_{COM} = 80mA,$	25			0.1	
On-Resistance Flatness	R _{FLAT(ON)}	$V_{NO} \text{ or } V_{NC} = 0.8V \ 1.8V$	Full			0.1	
Dynamic							
Turn-On Time t _{ON}	tov	$V_{CC} = 2.5V$, V_{NO} or $V_{NC} =$ $\begin{array}{c} 25 \\ \text{Full} \end{array}$	25			20	
	UN				30		
Turn-Off Time	torr	1.8V, Figure 1	25			12	
Turn-On Time	$t_{ m OFF}$		Full			15	ns
Break-Before-Make	t _{BBM}	V_{NO} or $V_{NC} = 1.5V$, $R_L = 50\Omega$, $C_L = 35$ pF, See Figure 8	25	1	15		
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 2	25		60		pC
Logic Input							
Input HIGH Voltage	$V_{ m IH}$	Guaranteed logic high level	Full	1.4			V
Input LOW Voltage	$V_{ m IL}$	Guaranteed logic Low level	Full			0.5	
Input HIGH Current	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$	Full	-1		1	^
Input HIGH Current	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μΑ

The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

4

- Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} - R_{ON} \text{ min.}$
- Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

07/21/04

Electrical Specifications - Single +1.8V Supply

 $(V_{CC} = +1.8V \pm 10\%, GND = 0V, V_{INH} = 1.4V, V_{INL} = 0.5V)$

Description	Parameters	Test Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch						-	
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V _{CC}	V
On-Resistance	R _{ON}		25			0.55	
OII-Resistance	KON	$V_{CC} = 1.8V, I_{COM} = 60mA,$	Full			0.7	
On-Resistance Match	$\Delta R_{ m ON}$	V_{NO} or $V_{NC} = 1.5V$	25			0.03	Ω
Between Channels (4)	AKON		Full			0.03	22
On-Resistance Flat-	D	$V_{CC} = 1.8V, I_{COM} = 60mA,$	25			0.9	
ness ⁽⁵⁾	R _{FLAT(ON)}	V_{NO} or $V_{NC} = 0.8V$, 1.5V	Full			1.1	
Dynamic							
Turn On Timo	rn-On Time t _{ON}	$V_{CC} = 1.8V, V_{NO} \text{ or } V_{NC} = 1.5V,$ Full Figure 1 25	25			40	
Turn-On Time			Full			50	
Turn-Off Time	4		25			12	
Turn-On Time	t _{OFF}		Full			15	ns
Break-Before-Make	t _{BBM}	V_{NO} or V_{NC} = 1.5V, R_L = 50 Ω , C_L = 35pF, See Figure 8	25	1	30		
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 2	25		40		рC
Logic Input							
Input HIGH Voltage	$V_{ m IH}$	Guaranteed logic high level	Full	1.4			V
Input LOW Voltage	$V_{ m IL}$	Guaranteed logic Low level	Full			0.5	v
Input HIGH Current	I _{INH}	$V_{IN} = 1.4V$, all others = 0.5V	Full	-1		1	^
Input HIGH Current	I _{INL}	$V_{IN} = 0.5V$, all others =1.4V	Full	-1		1	μA

Notes:

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Test Circuits/Timing Diagrams

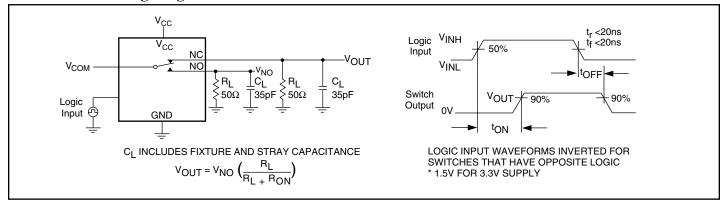


Figure 1. Switching Time

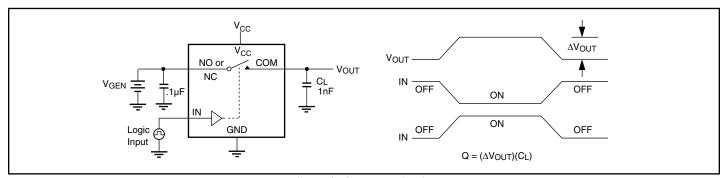


Figure 2. Charge Injection

6

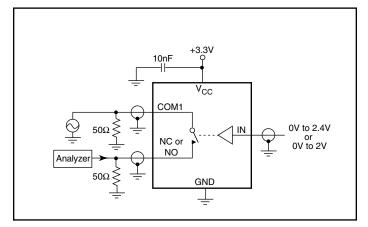


Figure 3. Off Isolation

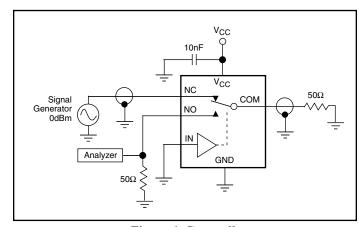


Figure 4. Crosstalk

07/21/04

Test Circuits/Timing Diagrams (continued)

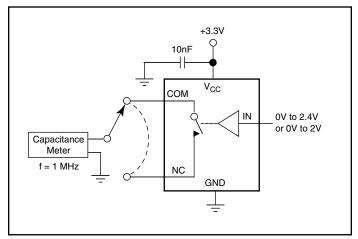


Figure 5. Channel-Off Capacitance

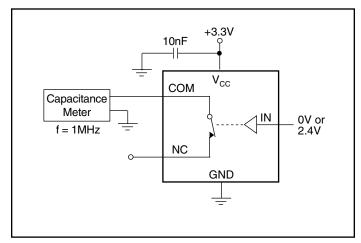
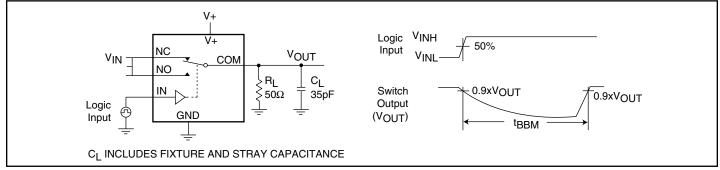
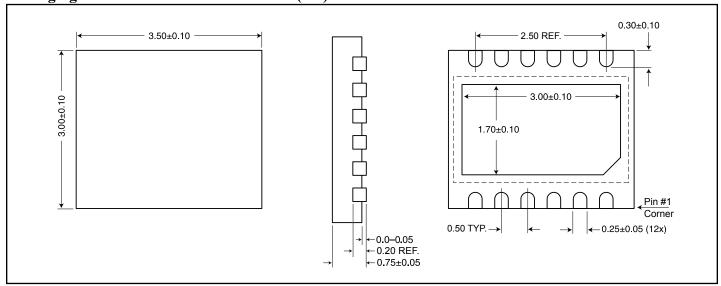
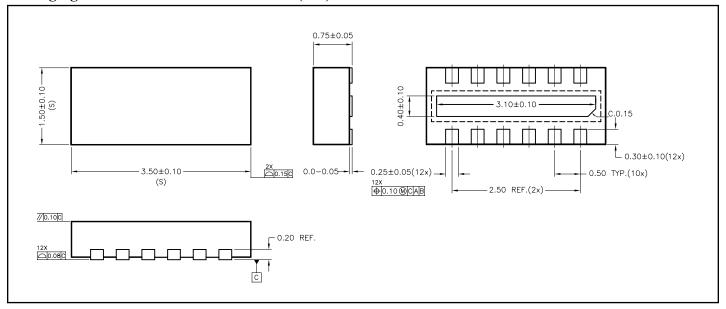


Figure 6. Channel-On Capacitance


Figure 8. Break Before Make Diagram

Packaging Mechanical: 12-Contact TDFN (ZE)

Packaging Mechanical: 12-Contact TDFN (ZG)

Ordering Information

Ordering Code	Package Code	Package Description	Top Mark
PI3A3160ZEEX	ZE	Pb-free & Green, 12-contact TDFN	YI
PI3A3160ZGEX	ZG	Pb-free & Green, 12-contact TDFN	YI

Notes:

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. X = Tape/Reel
- 3. Number of transistors = TBD