

Discrete Power & Signal Technologies

July 1998

FSB619

SuperSOT[™]-3 (SOT-23)

NPN Low Saturation Transistor

These devices are designed with high current gain and low saturation voltage with collector currents up to 3A continuous.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	FSB619	Units
V _{CEO}	Collector-Emitter Voltage	50	V
V _{CBO}	Collector-Base Voltage	50	V
V _{EBO}	Emitter-Base Voltage	5	V
Ic	Collector Current - Continuous	2	А
T _{J,} T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES

- 1) These ratings are based on a maximum junction temperature of 150°C.
- 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics T_{A = 25°C unless otherwise noted}

Symbol	Characteristic	Max	Units
		FSB619	
P _D	Total Device Dissipation* Derate above 25°C	500 4	mW mW/°C
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	250	°C/W

*Device mounted on FR-4 PCB 4.5" X 5"; mounting pad 0.02 in² of 2oz copper.

NPN Low Saturation Transistor

(continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHAI	RACTERISTICS				
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C = 10 mA	50		V
BV _{CBO}	Collector-Base Breakdown Voltage	I _C = 100 μA	50		V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E = 100 μA	5		V
I _{CBO}	Collector Cutoff Current	V _{CB} = 40 V		100	nA
I _{EBO}	Emitter Cutoff Current	V _{EB} = 4V		100	nA
I _{CES}	Collector Emitter Cutoff Current	V _{CES} = 40 V		100	nA
ON CHAR	ACTERISTICS*				
h _{FE}	DC Current Gain	I _C = 10 mA, V _{CE} = 2V	200		-
		$I_C = 200 \text{ mA}, V_{CE} = 2V$	300		
		$I_C = 1A$, $V_{CE} = 2V$	200		
		$I_C = 2A$, $V_{CE} = 2V$	100		
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C = 100 mA, I _B = 10 mA		20	mV
		$I_C = 1 \text{ A}, I_B = 10 \text{ mA}$		235	
		$I_C = 2 \text{ A}, I_B = 50 \text{ mA}$		320	
V _{BE(sat)}	Base-Emitter Saturation Voltage	I _C = 2 A, I _B = 50 mA		1	V
V _{BE(on)}	Base-Emitter On Voltage	I _C = 2 A, V _{CE} = 2 V		1	V
	•	•	•	•	

 $V_{CB} = 10 \text{ V}, I_E = 0, f = 1MHz$

 $I_C = 50 \text{ mA}, V_{CE} = 10 \text{ V}, f=100 \text{MHz}$

*Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

Output Capacitance

Transition Frequency

 $C_{\text{obo}} \\$

fΤ

pF

30

100