				April 1999			
	359AN hannel L	ogic Level P	owerTrench [™] I	MOSFET			
Genera	al Descriptio	on		Features			
This N-Channel Logic Level MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance. These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.				 2.7 A, 30 V. R_{DS(ON)} = 0.046 Ω @ V_{GS} = 10 V R_{DS(ON)} = 0.060 Ω @ V_{GS} = 4.5 V. Very fast switching. Low gate charge (5nC typical). High power version of industry standard SOT-23 package. Identical pin out to SOT-23 with 30% higher power handling capability. 			
				SO-8	SOT-223	SOIC-16	
SC	DT-23	SuperSOT [™] -6	SuperSOT [™] -8				
SC							
Absol	Supe	D 359A 359A G					
Absol	Supe ute Maxim Parameter	$\frac{D}{359A}$ rsot ^T -3 G um Ratings T _A =	s		G S	Units	
Absol Symbol	Supe	D 359A G rSOT™-3 G um Ratings T _A =	s		G S Ratings	Units V	
Absol Symbol / _{css}	Supe ute Maxim Parameter Drain-Sourc Gate-Sourc	$\frac{D}{359A}$ $\frac{359A}{G}$ G T_{-3} G $T_{A} = \frac{1}{2}$ $E \text{ Voltage}$ $E \text{ Voltage}$	S		D G S G S Ratings 30 ±20 ±20	Units UV V	
Absol Symbol / _{css}	Supe ute Maxim Parameter Drain-Sourc Gate-Sourc	D 359A G rSOT™-3 G um Ratings T _A =	S = 25°C unless other wise		G S Ratings	Units V	
Absol Symbol /oss /oss	Supe Lute Maxim Parameter Drain-Sourc Gate-Sourc Maximum E	$\frac{D}{359}A$ $r_{SOT} = 3$ G $T_{A} = 0$	S = 25°C unless other wise		D G S G S Ratings 30 ±20 2.7	Units UV V	
Absol Symbol /oss /oss	Supe Lute Maxim Parameter Drain-Sourc Gate-Sourc Maximum E	D $359A$ G $FSOT \xrightarrow{M} 3$ G $T_A =$ $Drain Current - Continu - Pulse$	S S = 25°C unless other wise		D G S G S Ratings 30 ±20 2.7 15 15	Units V V A	
Absol Symbol /pss /gss p 2 p	Supe	D $359A$ G $FSOT \xrightarrow{M} 3$ G $T_A =$ $Drain Current - Continu - Pulse$	S S S S S S S S S S S S S S S S S S S		D G S G S Ratings 30 ±20 2.7 15 0.5	Units V V A	
Absol Symbol /oss /oss D	Supe	D G	S S S S S S S S S S S S S S S S S S S		D G S G S Ratings S 30 ±20 2.7 15 0.5 0.46	Units UV V A W W	
Absol Symbol /oss /oss D D D	Supe	D G	S S = 25°C unless other wise ious (Note 1a) ed (Note 1a) (Note 1b) ure Range		D G S G S Ratings S 30 ±20 2.7 15 0.5 0.46	Units UV V A W W	

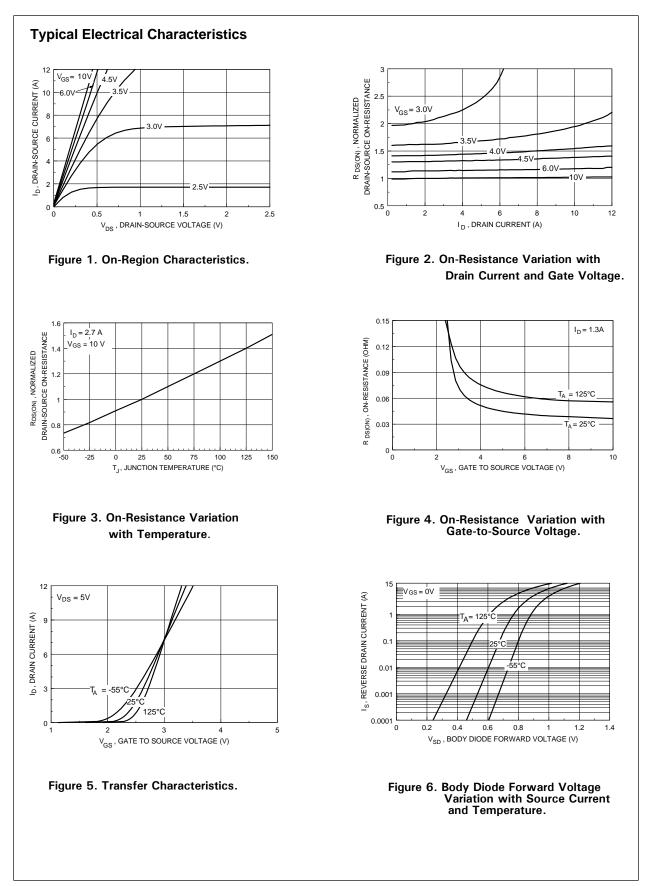
© 1999 Fairchild Semiconductor Corporation

Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHAR	ACTERISTICS	·					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = 250 \mu A$		30			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	I_{D} = 250 µA, Referenced to	0 25 ℃		23		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{\rm DS} = 24 \text{V}, \text{V}_{\rm GS} = 0 \text{V}$				1	μA
			T _J = 55°C			10	μA
	Gate - Body Leakage, Forward	$V_{GS} = 20 V, V_{DS} = 0 V$	•			100	nA
	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
	CTERISTICS (Note)	·			•		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		1	1.6	3	V
$\Delta V_{GS(th)} / \Delta T_J$	Gate Threshold Voltage Temp. Coefficient	$I_{\rm D}$ = 250 µA, Referenced to	$I_D = 250 \ \mu\text{A}$, Referenced to $25 \ ^{\circ}\text{C}$		-4		mV/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, I_{D} = 2.7 \text{ A}$			0.037	0.046	Ω
			T _J =125°C		0.055	0.075	
		$V_{GS} = 4.5 \text{ V}, I_{D} = 2.4 \text{ A}$			0.049	0.06	
I _{D(ON)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$		15			Α
9 _{FS}	Forward Transconductance	$V_{DS} = 5 V, I_{D} = 2.7 A$			9.5		S
DYNAMIC C	HARACTERISTICS						
C _{iss}	Input Capacitance	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz			480		pF
C _{oss}	Output Capacitance	f = 1.0 MHz			120		pF
C _{rss}	Reverse Transfer Capacitance				45		pF
SWITCHING	CHARACTERISTICS (Note)						
t _{D(on)}	Turn - On Delay Time	$V_{DD} = 5 V, I_D = 1 A,$ $V_{GS} = 4.5 V, R_{GEN} = 6 \Omega$			6	12	ns
ţ	Turn - On Rise Time				13	24	ns
t _{D(off)}	Turn - Off Delay Time				15	27	ns
t,	Turn - Off Fall Time				4	10	ns
Q _g	Total Gate Charge	$V_{DS} = 10 \text{ V}, \ \text{I}_{D} = 2.7 \text{ A},$			5	7	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 5 V$			1.4		nC
Q _{gd}	Gate-Drain Charge				1.6		nC
DRAIN-SOL	IRCE DIODE CHARACTERISTICS AND M	AXIMUM RATINGS					
l _s	Maximum Continuous Drain-Source Diode F	orward Current				0.42	А
V _{SD}	Drain-Source Diode Forward Voltage	rce Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_{S} = 0.42 \text{ A}_{(Note)}$			0.65	1.2	V

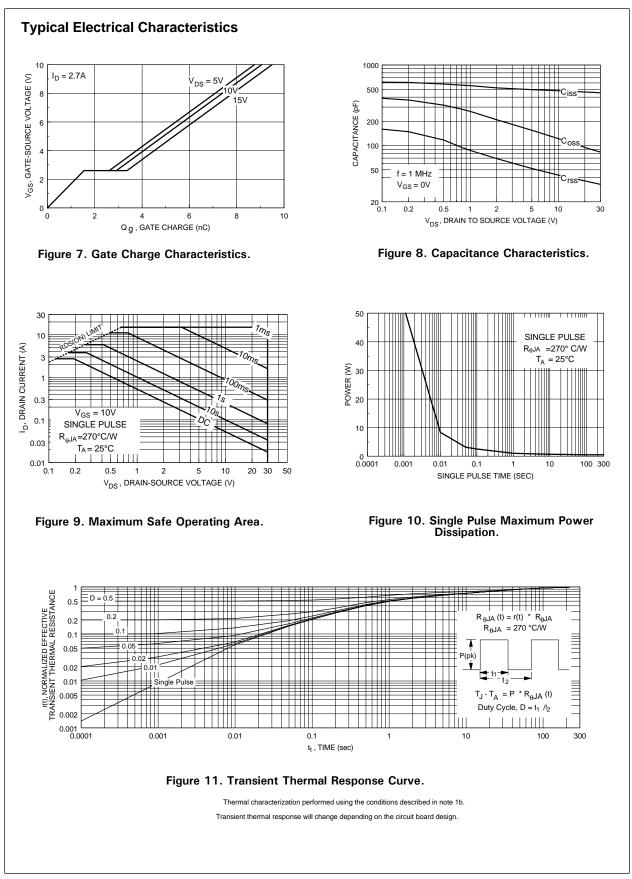
Note:

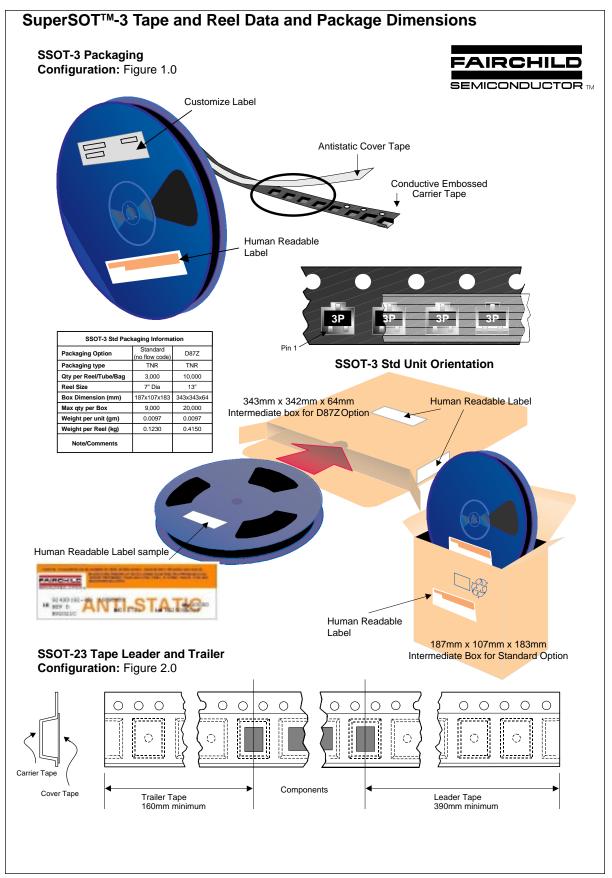
1. R_{eux} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{euc} is guaranteed by design while R_{eck} is determined by the user's board design.

Typical $\rm R_{_{BJA}}$ using the board layouts shown below on FR-4 PCB in a still air environment :

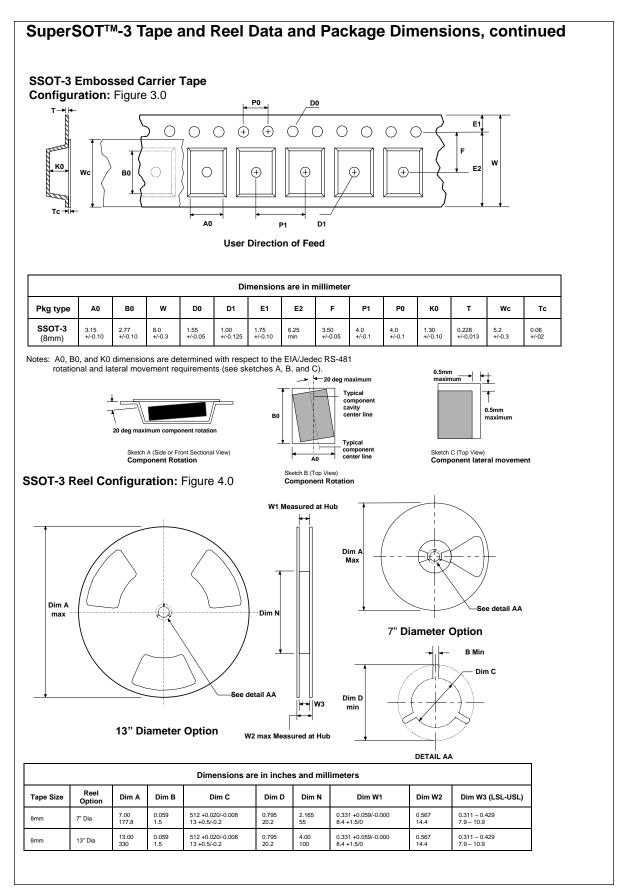

a. 250°C/W when mounted on a 0.02 in² pad of 2oz Cu.

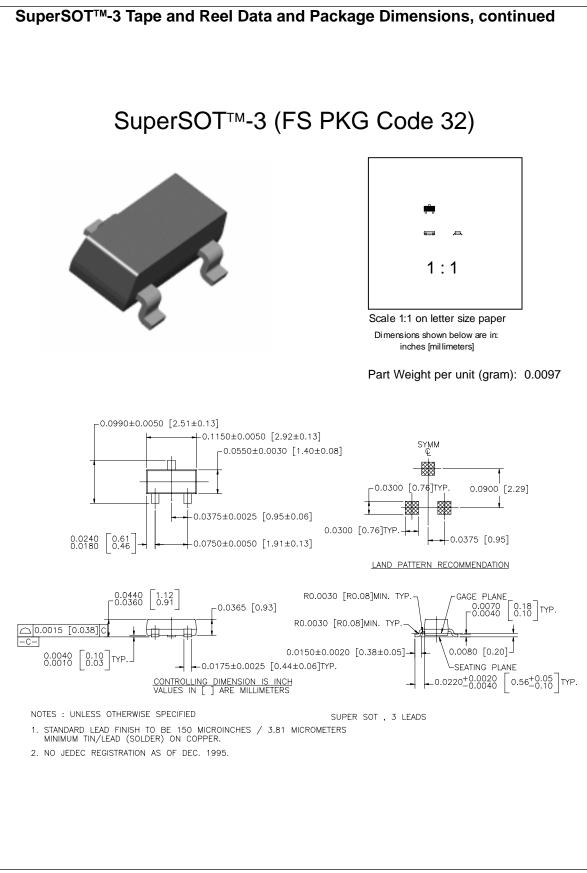
Î 7


b. 270°C/W when mounted on a minimum pad.


Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2.0%.




FDN359AN Rev.C

December 1998, Rev. B

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.