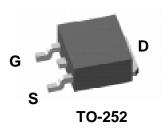
FDD6030L

SEMICONDUCTOR

FDD6030L N-Channel Logic Level Enhancement Mode Field Effect Transistor


General Description


These N-Channel logic level enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications such as DC/DC converters and high efficiency switching circuits where fast switching, low in-line power loss, and resistance to transients are needed.

Features

• 50 A, 30 V. $R_{DS(ON)} = 0.0135 \Omega @ V_{GS} = 10 V$ $R_{DS(ON)} = 0.0200 \Omega @ V_{GS} = 4.5 V.$

- Low gate charge.
- Fast switching speed.
- Low Crss.

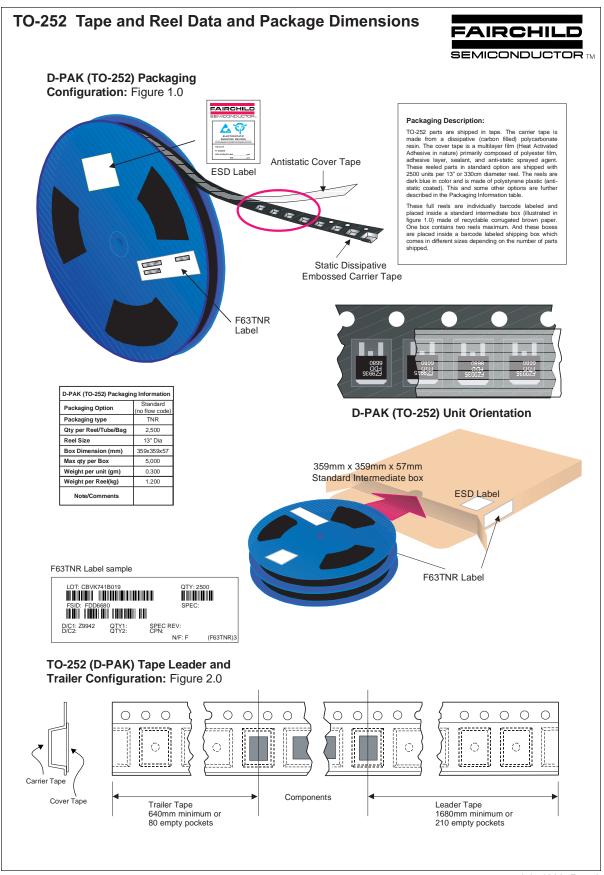
Absolute Maximum Ratings Tc=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		30	V
V _{GSS}	Gate-Source Voltage		<u>+</u> 20	V
ID	Maximum Drain Current -Continuous	(Note 1)	50	A
		(Note 1a)	12	
	Maximum Drain Current -Pulsed		150	
PD	Maximum Power Dissipation @ $T_c = 25^{\circ}C$ ((Note 1)	60	W
	$T_A = 25^{\circ}C$	(Note 1a)	3.2	
	$T_A = 25^{\circ}C$	(Note 1b)	1.3	
T _J , T _{stg}	Operating and Storage Junction Temperature R	ange	-55 to +150	۰C

Thermal Characteristics

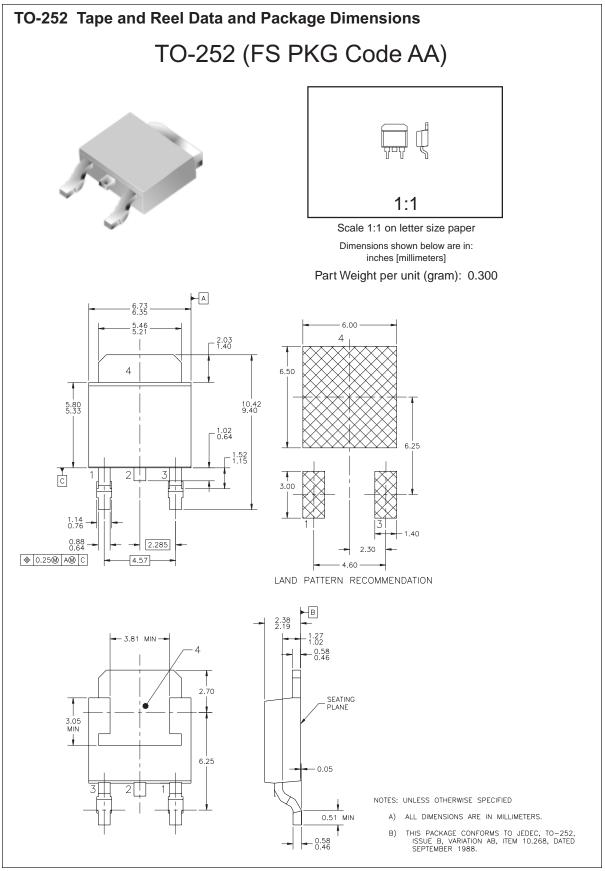
R _{θJC}	Thermal Resistance, Junction-to- Case	(Note 1)	2.1	∘C/W
R _{θJA}	Thermal Resistance, Junction-to- Ambient	(Note 1a)	39	∘C/W
		(Note 1b)	96	°C/W

Package Marking and Ordering Information


Device Marking	Device	Reel Size	Tape width	Quantity
FDD6030L	FDD6030L	13"	16mm	2500

©1999 Fairchild Semiconductor Corporation

ACTERISTICS ain-Source Breakdown Voltage ro Gate Voltage Drain Current ate-Body Leakage, Forward ate-Body Leakage, Reverse CTERISTICS (Note 2) ate Threshold Voltage atic Drain-Source 1-Resistance JRCE DIODE CHARACTE aximum Continuous Drain-Source ain-Source Diode Forward altage e junction-to-case and case-to-ambient them by design while R _{eCA} is determined by the use a) R _{BUA} =40°C/W when 1 in ² pad of 2oz coppen	e Diode Forward Current $V_{GS} = 0 \text{ V}, \text{ I}_{S} = 2.7 \text{ A}$ mal resistance where the case thermal reference or's board design.		the drain ta	ited on	V μA nA nA V Ω A V
ain-Source Breakdown Voltage ro Gate Voltage Drain Current ate-Body Leakage, Forward ate-Body Leakage, Reverse CTERISTICS (Note 2) ate Threshold Voltage atic Drain-Source n-Resistance JRCE DIODE CHARACTE aximum Continuous Drain-Source ain-Source Diode Forward litage a) R _{8,0,4} =40 ^o C/W wher 1 in ² pad of 2oz copper	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{DS} = V_{GS}, I_D = 250 \text{ \muA}$ $V_{GS} = 10 \text{ V}, I_D = 12 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 10 \text{ A}$ ERISTICS AND MAXIMUN e Diode Forward Current $V_{GS} = 0 \text{ V}, I_S = 2.7 \text{ A}$ mal resistance where the case thermal references board design.	1 M RATINC ence is defined as b) R _{BJA} =96°C/M	the drain ta	100 -100 3 0.0135 0.0200 2.7 1.2 b.	μA nA nA V Ω
ate-Body Leakage, Forward ate-Body Leakage, Forward ate-Body Leakage, Reverse CTERISTICS (Note 2) ate Threshold Voltage atic Drain-Source DRCE DIODE CHARACTE aximum Continuous Drain-Source ain-Source Diode Forward ain-Source Diode Forward ain-Source and case-to-ambient therr by design while R _{eCA} is determined by the use a) R _{BUA} = 40 ^o C/W wher 1 in ² pad of 2oz copper	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{DS} = V_{GS}, I_D = 250 \text{ \muA}$ $V_{GS} = 10 \text{ V}, I_D = 12 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 10 \text{ A}$ ERISTICS AND MAXIMUN e Diode Forward Current $V_{GS} = 0 \text{ V}, I_S = 2.7 \text{ A}$ mal resistance where the case thermal references board design.	1 M RATINC ence is defined as b) R _{BJA} =96°C/M	the drain ta	100 -100 3 0.0135 0.0200 2.7 1.2 b.	μA nA nA V Ω
Atte-Body Leakage, Forward Atte-Body Leakage, Reverse CTERISTICS (Note 2) Ate Threshold Voltage Atte Threshold Voltage At	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$ $V_{GS} = 10 \text{ V}, I_D = 12 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 10 \text{ A}$ ERISTICS AND MAXIMUN e Diode Forward Current $V_{GS} = 0 \text{ V}, I_S = 2.7 \text{ A}$ mal resistance where the case thermal reference of s board design.	b) R _{BJA} = 96°C/W	the drain ta	100 -100 3 0.0135 0.0200 2.7 1.2 b.	nA nA V Ω
Atte-Body Leakage, Reverse CTERISTICS (Note 2) Ate Threshold Voltage atic Drain-Source h-Resistance JRCE DIODE CHARACTE aximum Continuous Drain-Source ain-Source Diode Forward Itage ne junction-to-case and case-to-ambient them by design while R _{0CA} is determined by the use a) R _{8JA} = 40 ^o C/W when 1 in ² pad of 2oz coppen	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$ $V_{GS} = 10 \text{ V}, I_D = 12 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 10 \text{ A}$ ERISTICS AND MAXIMUN e Diode Forward Current $V_{GS} = 0 \text{ V}, I_S = 2.7 \text{ A}$ mal resistance where the case thermal refere er's board design.	b) R _{BJA} = 96°C/W	the drain ta	-100 3 0.0135 0.0200 2.7 1.2 b.	nA V Ω A
atic Drain-Source h-Resistance JRCE DIODE CHARACTE aximum Continuous Drain-Source ain-Source Diode Forward litage he junction-to-case and case-to-ambient therr by design while R _{eCA} is determined by the use a) R _{BUA} =40 ^o C/W wher 1 in ² pad of 2oz copper	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 12 \text{ A}$ $V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 10 \text{ A}$ ERISTICS AND MAXIMUN e Diode Forward Current $V_{GS} = 0 \text{ V}, \text{ I}_{S} = 2.7 \text{ A}$ mal resistance where the case thermal refere er's board design.	b) R _{BJA} = 96°C/W	the drain ta	0.0135 0.0200 2.7 1.2 b.	Ω A
atic Drain-Source h-Resistance JRCE DIODE CHARACTE aximum Continuous Drain-Source ain-Source Diode Forward litage he junction-to-case and case-to-ambient therr by design while R _{eCA} is determined by the use a) R _{BUA} =40 ^o C/W wher 1 in ² pad of 2oz copper	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 12 \text{ A}$ $V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 10 \text{ A}$ ERISTICS AND MAXIMUN e Diode Forward Current $V_{GS} = 0 \text{ V}, \text{ I}_{S} = 2.7 \text{ A}$ mal resistance where the case thermal refere er's board design.	b) R _{BJA} = 96°C/W	the drain ta	0.0135 0.0200 2.7 1.2 b.	Ω A
atic Drain-Source <u>IRCE DIODE CHARACTE</u> aximum Continuous Drain-Source ain-Source Diode Forward Itage ne junction-to-case and case-to-ambient then by design while R _{eCA} is determined by the use a) R _{BJA} =40 ^o C/W when 1 in ² pad of 2oz coppen	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 12 \text{ A}$ $V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 10 \text{ A}$ ERISTICS AND MAXIMUN e Diode Forward Current $V_{GS} = 0 \text{ V}, \text{ I}_{S} = 2.7 \text{ A}$ mal resistance where the case thermal refere er's board design.	b) R _{BJA} = 96°C/W	the drain ta	0.0135 0.0200 2.7 1.2 b.	Ω A
A-Resistance	$V_{GS} = 4.5 \text{ V}, I_D = 10 \text{ A}$ ERISTICS AND MAXIMUN e Diode Forward Current $V_{GS} = 0 \text{ V}, I_S = 2.7 \text{ A}$ mal resistance where the case thermal refere er's board design.	b) R _{8JA} = 96°C/W	the drain ta	0.0200 2.7 1.2 b.	A
aximum Continuous Drain-Source ain-Source Diode Forward Itage e junction-to-case and case-to-ambient them by design while R _{0CA} is determined by the use a) R _{0JA} =40 ^o C/W when 1 in ² pad of 2oz coppen	e Diode Forward Current $V_{GS} = 0 \text{ V}, \text{ I}_{S} = 2.7 \text{ A}$ mal resistance where the case thermal reference or's board design.	b) R _{8JA} = 96°C/W	the drain ta	1.2 b.	
aximum Continuous Drain-Source ain-Source Diode Forward Itage e junction-to-case and case-to-ambient them by design while R _{0CA} is determined by the use a) R _{0JA} =40 ^o C/W when 1 in ² pad of 2oz coppen	e Diode Forward Current $V_{GS} = 0 \text{ V}, \text{ I}_{S} = 2.7 \text{ A}$ mal resistance where the case thermal reference or's board design.	b) R _{8JA} = 96°C/W	the drain ta	1.2 b.	
Itage he junction-to-case and case-to-ambient them by design while R _{0CA} is determined by the use a) R _{0JA} = 40 ^o C/W when 1 in ² pad of 2oz coppen	mal resistance where the case thermal refere er's board design. I mounted on a	b) R _{0JA} = 96°C/W	/ when mour	b. ted on	V
e junction-to-case and case-to-ambient them by design while R _{BCA} is determined by the use a) R _{BJA} = 40 ^o C/W when 1 in ² pad of 2oz copper	er's board design. I mounted on a	b) R _{0JA} = 96°C/W	/ when mour	ited on	1


FDD6030L Rev. A1

FDD6030L

July 1999, Rev. A

September 1999, Rev. A

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR™ MICROWIRE™ POP™ PowerTrench® QFET™ QS™ Quiet Series™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.