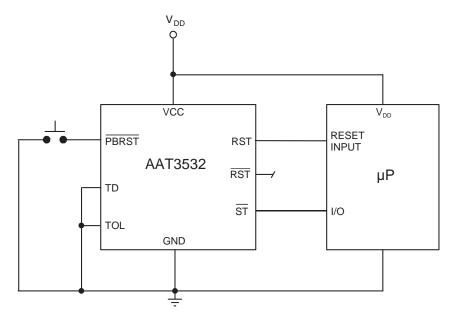


AAT3532 MicroPower™ Microprocessor Reset Circuit

General Description

The AAT3532 PowerManager is a member of AnalogicTech's Total Power Management IC™ (TPMIC[™]) product family. It is a fully integrated device for monitoring microprocessor activity, external reset, and power supply conditions. The device holds the microprocessor in a reset condition for a minimum of 250ms while V_{CC} is established to ensure correct system start-up. A manual reset can be initiated via a de-bounced input pin. As an additional level of protection, the AAT3532 includes a watchdog timer which requires a periodic strobe input from the microprocessor to ensure correct operation. The AAT3532 has a programmable watchdog timer and voltage tolerance level. The quiescent supply current is extremely low, typically 23µA.

The AAT3532 is available in a Pb-free, 8-pin SOP package and is specified over the -40°C to +85°C temperature range.


Features

PowerManager[™]

- Adjustable 4.5V or 4.75V Voltage Monitor
- 250ms (min) Reset Pulse Width
- Low Quiescent Current: Typically 23µA
- Adjustable Watchdog Timer (150ms, 600ms, or 1200ms)
- De-bounced Manual Reset Input
- Operates Down to 20ns Strobe Input Pulse
 Width
- No External Components
- Temperature Range: -40° to +85°C
- Standard 8-Pin SOP Package
- Pin Compatible with MAX1232

Applications

- Automotive
- Computers
- Controllers
- Embedded Systems
- Intelligent Instrumentation
- Telecom Equipment

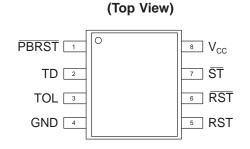
Typical Application

Pin Descriptions

Pin #	Symbol	Function	
1	PBRST	Push-button reset input. A de-bounced active low input for manual reset. Guaranteed	
		to recognize inputs 20ms or greater.	
2	TD	Watchdog time delay set input. See Table 1 for watchdog timeout selections.	
3	TOL	Tolerance set. Input selects 5% or 10% threshold detection.	
4	GND	IC ground connection.	
5	RST	Reset output (active high). Activated when either: V _{CC} falls below the reset voltage threshold; PBRST is forced low; ST is not strobed within the minimum timeout peric or during power-up.	
6	RST	Reset output (active low, open drain). Inverse of RST.	
7	ST	Strobe input to watchdog timer. A pulse is required within the watchdog timeout period to prevent RST and RST entering active state.	
8	VCC	5V supply.	

Pin Programming Selections

	Timeout			
TD Pin	Min	Тур	Мах	
GND	62.5ms	150ms	250ms	
Float	250ms	600ms	1000ms	
V _{CC}	500ms	1200ms	2000ms	


Table 1: TD Pin Programming for Watchdog Timeout Selections.

TOL Pin	Tolerance		
V _{CC}	10%		
GND	5%		

Table 2: Reset Voltage Threshold Programming Selections.

SOP-8

Pin Configuration

Absolute Maximum Ratings¹

 $T_A = 25^{\circ}C$, unless otherwise noted.

Symbol	Description	Value	Units
V _{cc}	V _{CC} to GND	-0.5 to 6	V
V _{I/O}	Voltage on I/O Pins Relative to GND	-0.5 to (V _{CC} +0.5)	V
T _A	Operating Temperature Range	-40 to 85	°C
Τ _s	Storage Temperature Range	-65 to 150	°C
T _{LEAD}	Maximum Soldering Temperature (at leads) for 10s	300	°C
V _{ESD}	ESD Rating ² —HBM	2000	V

Thermal Characteristics³

Symbol	Description	Value	Units	
Θ _{JA} Maximum Thermal Resistance		100	°C/W	
P _D Maximum Power Dissipation		1.25	W	

^{1.} Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.

^{2.} Human body model is a 100pF capacitor discharged through a 1.5 $\!\kappa\Omega$ resistor into each pin.

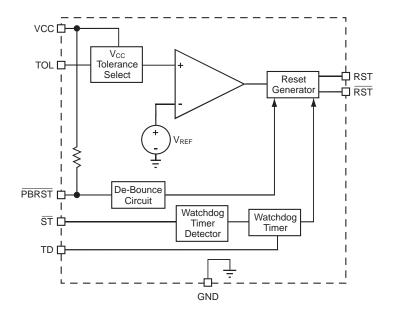
^{3.} Mounted on an FR4 board.

 $\frac{\text{DC Electrical Characteristics}}{V_{\text{IN}} = 4.5 \text{V to } 5.5 \text{V}, \text{ } \text{T}_{\text{A}} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are } \text{T}_{\text{A}} = 25^{\circ}\text{C}.$

Symbol	Description	Conditions		Min	Тур	Max	Units
V _{cc}	Supply Voltage			4.5	5.0	5.5	V
	Outressent Ourresst1		CMOS Levels		23	50	
۱ _Q	Quiescent Current ¹	$V_{CC} = 5.5V$	TTL Levels		160	500	μA
V	Reset Threshold 5%		ł.	4.50	4.62	4.74	V
V _{CCTP}	Reset Threshold 10%	$TOL = V_{CC}$		4.25	4.37	4.49	v
I	Input Leakage ST, TOL			-1.0		1.0	μA
I _{он}	Output Current RST ²	V _{OH} = 2.4V		-8.0			mA
I _{OL}	Current RST ² , RST	$V_{OL} = 0.4V$		10.0			mA
V _{IH}	ST and PBRST Input High			2.0		V _{CC} + 0.3	V
V _{IL}	ST and PBRST Input Low			-0.3		0.8	V
IRST	RST Output Leakage	$V_{OH} = V_{CC}$				1.0	μA

AC Electrical Characteristics

 V_{IN} = 4.5V to 5.5V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are T_A = 25°C.

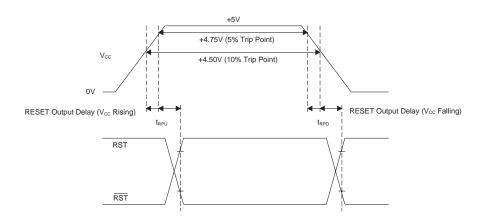

Symbol	Description	Conditions	Min	Тур	Max	Units
C _{IN}	Input Capacitance ST, TOL ³	$T_A = 25^{\circ}C$			5	pF
C _{OUT}	Output Capacitance RST, RST ³	$T_A = 25^{\circ}C$			7	pF
t _{PB}	PBRST₄	See Figure 2	20			ms
t _{PBD}	PBRST Delay	See Figure 2	1	4	20	ms
t _{RST}	Reset Active Time		250	610	1000	ms
t _{ST}	ST Pulse Width	See Figure 3	20			ns
		TD Pin = 0V	62.5	150	250	
t _{TD}	ST Time-out Period	TD Pin = Open	250	600	1000	ms
		TD Pin = V _{CC}	500	1200	2000	
t _f	V _{CC} Fall Time ³	4.75V to 4.25V	10			μs
t _r	V _{CC} Rise Time ³	4.25V to 4.75V	0	5		μs
t _{RPD}	V _{CC} Detect to RST High and RST Low	V _{CC} Falling			50	μs
t _{RPU}	V_{CC} Detect to RST Low and \overline{RST} Open	V _{CC} Rising	250	610	1000	ms

- 2. RST is an open drain output.
- 3. Guaranteed by design and not subject to production testing.
- 4. PBRST must remain low for greater than 20ms to guarantee a reset.

^{1.} Measured with outputs open and \overline{ST} toggling at 100kHz, 50% duty cycle.

Functional Block Diagram

Applications Information


Power Monitor

The reset function monitors the V_{CC} supply to ensure a microprocessor is correctly reset and is powered up into a known condition following a power supply failure. RST and RST will remain valid for V_{CC} voltages down to 1.4V.

The RST and $\overline{\text{RST}}$ pins are asserted whenever V_{CC} drops below the reset threshold voltage. This volt-

age can be set by programming the TOL pin. Connecting TOL to V_{CC} sets the 10% tolerance of the V_{CC} supply (typically 4.37V for $V_{CC} = 5V$). Connecting TOL to GND sets the 5% tolerance of the V_{CC} supply (typically 4.62V for $V_{CC} = 5V$). The reset pin is guaranteed to remain asserted for a minimum period of 250ms after V_{CC} has risen above the reset threshold voltage. (See Figure 1.)

RST output is an open drain output. For correct operation, a pull-up resistor of $10k\Omega$ should be connected between this output and V_{CC}.

Manual Reset

The PBRST pin makes it possible to manually reset the system by either directly connecting a mechanical push-button between the PBRST pin and GND or connecting to a logic low output. Internal de-bounce circuitry is provided to reduce the effect of noise glitches at the input. The signal should remain low for a minimum of 20ms for correct operation. Once the PBRST signal is released (or goes to a logic high), RESET (RESET) remains asserted for a minimum of 250ms.

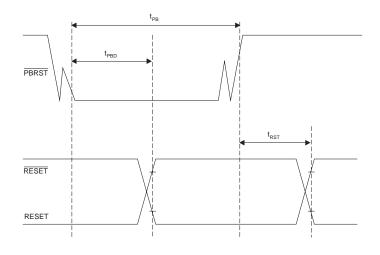


Figure 2: Push-Button Reset.

Watchdog Timer

The watchdog timer monitors the microprocessor to ensure that the system is functioning correctly. The ST pin of the AAT3532 can be derived from the microprocessor data signals, address signals, and/or I/O signals. The watchdog timer function forces the RST and RST signals into the active state when the ST input is not toggled by a predetermined time. This time period is set by the logic state of the TD pin, as shown in Table 1. The timer starts once the RST signals become inactive. If the watchdog timer does not receive a high-to-low transition within the specified timeout period, then the RST signals are activated for a minimum 250ms. In normal operation, the timer should receive a transition from the microprocessor within the timeout period, in which case the timer is reset and normal operation continues.

The AAT3532 will accept and recognize \overline{ST} pulses down to a minimum of 20ns wide.

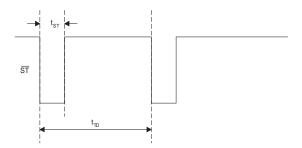
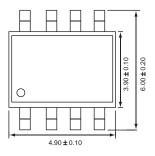


Figure 3: Watchdog Input.

Ordering Information


Package	Marking	Part Number (Tape and Reel) ¹
SOP-8	3532	AAT3532IAS-T1

All AnalogicTech products are offered in Pb-free packaging. The term "Pb-free" means semiconductor products that are in compliance with current RoHS standards, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. For more information, please visit our website at http://www.analogictech.com/pbfree.

Package Information

All dimensions in millimeters.

1. Sample stock is generally held on all part numbers listed in BOLD.

© Advanced Analogic Technologies, Inc.

AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights, or other intellectual property rights are implied. AnalogicTech reserves the right to make changes to their products or specifications or to discontinue any product or service without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. AnalogicTech verify before place are the sale in accordance with AnalogicTech's standard warranty. Testing and other quality control techniques are utilized to the extent AnalogicTech deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed.

Advanced Analogic Technologies, Inc. 830 E. Arques Avenue, Sunnyvale, CA 94085 Phone (408) 737-4600 Fax (408) 737-4611

