Features

Composite type with 2 transistors contained in the PCP5 package currently in use, improving the mounting efficiency greatly.
The FP216 is composed of two chips, each being equivalent to the 2 SC 3646 , placed in one package.

Electrical Connection

1:Base
2:Collector
3:Emitter Common
4:Collector
5:Base
6:Collector
7:Collector
(Top view)

Package Dimensions

unit:mm
2097B

Specifications

Absolute Maximum Ratings at $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Symbol		Conditions	Ratings
Collector-to-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$		120	V
Collector-to-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$		100	V
Emitter-to-Base Voltage	$\mathrm{V}_{\text {EBO }}$		6	V
Collector Current	I_{C}		1	A
Collector Current (Pulse)	I_{CP}		2	A
Base Current	I_{B}		200	mA
Collector Dissipation	P_{C}	Mounted on ceramic board $\left(250 \mathrm{~mm}^{2} \times 0.8 \mathrm{~mm}\right) 1$ unit	0.8	W
Total Dissipation	P_{T}	Mounted on ceramic board $\left(250 \mathrm{~mm}^{2} \times 0.8 \mathrm{~mm}\right)$	1.1	W
Junction Temperature	Tj		150	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg		${ }^{\circ} \mathrm{C}$	

Electrical Characteristics at $\mathbf{T a}=\mathbf{2 5}^{\circ} \mathrm{C}$

Parameter	Symbol	Conditons	Ratings			Unit
			min	typ	max	
Collector Cutoff Current	${ }^{\text {CBO }}$	$\mathrm{V}_{\mathrm{CB}}=100 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$			100	nA
Emitter Cutoff Current	lebo	$\mathrm{V}_{\text {EB }}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$			100	nA
DC Current Gain	$\mathrm{h}_{\text {FE }}$	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	140		400	
Gain-Bandwidth Product	${ }_{\text {f }}$	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$		120		MHz
Output Capacitance	Cob	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		8.5		pF
C-E Saturation Voltage	$\mathrm{V}_{\text {CE(sat) }}$	${ }^{1} \mathrm{C}=400 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=40 \mathrm{~mA}$		100	400	mV
B-E Saturation Voltage	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	${ }^{1} \mathrm{C}=400 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=40 \mathrm{~mA}$		0.85	1.2	V
C-B Breakdown Voltage	$\mathrm{V}_{\text {(BR) }} \mathrm{CBO}$	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	120			V
C-E Breakdown Voltage	$\mathrm{V}_{\text {(BR) }} \mathrm{VEO}^{\text {(BR) }}$	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{BE}}=\infty$	100			V
E-B Breakdown Voltage	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	6			V
Turn-ON Time	$\mathrm{t}_{\text {on }}$	See specified Test Circuit		80		ns
Storage Time	$\mathrm{t}_{\text {stg }}$	See specified Test Circuit		850		ns
Fall Time	t_{f}	See specified Test Circuit		50		ns

Marking:216

Switching Time Test Circuit

$h_{F E}-I_{C}$

FP216

This catalog provides information as of May, 1998. Specifications and information herein are subject to change without notice.

