

M62376GP

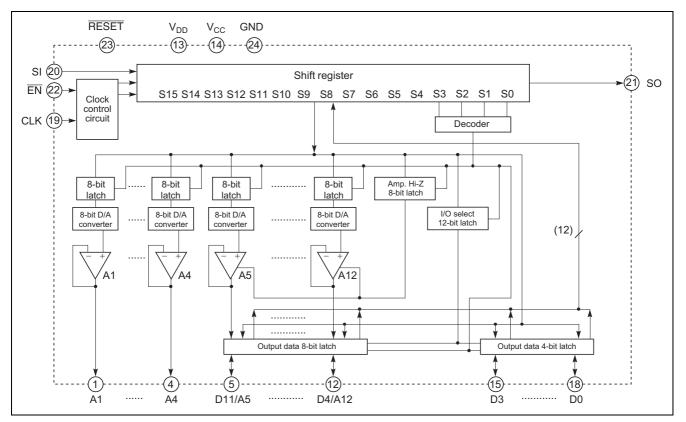
8-bit 12ch D/A Converter IC Built-in 12-bit I/O Expander

REJ03D0881-0300 Rev.3.00 Mar 25, 2008

Description

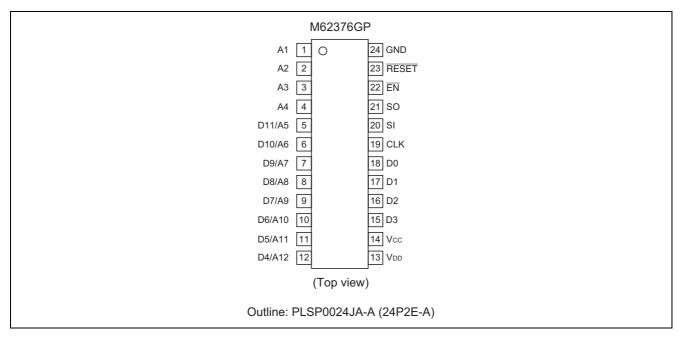
The M62376GP is a semiconductor IC that adopts a CMOS structure having 12 channels of 8-bit D/A converter and 12-bit I/O expander. The IC has achieved a wide operation range of 2.7 to 5.5 V in power voltage.

Data is easily available via 3-wire combination system serial input of SI, CLK and \overline{EN} . The IC also provides an SO pin enabling cascade connection. It provides 8 pins that share D/A converter and I/O ports that can be arbitrarily switched with serial input data.

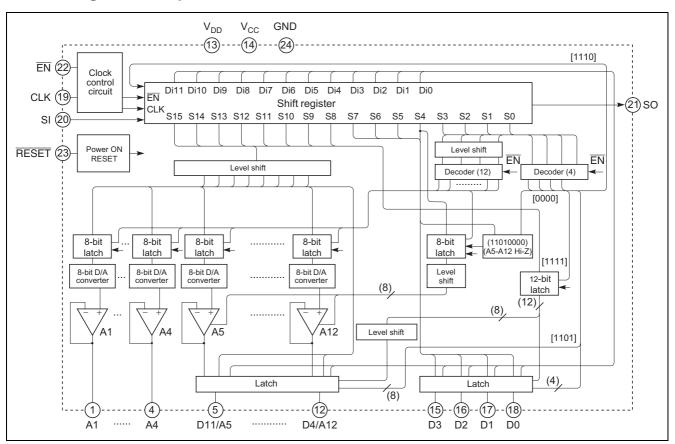

Features

- Supply voltage: 2.7 to 5.5 V
- Adopts 4 special ports for each of DAC and I/O and 8 ports that share DAC output and I/O
- Each port can be set by serial data for input/output status
- Built-in power-on reset where D/A output is set to "L" in the initial status and I/O goes to high-impedance when power is turned on
- Small package of 0.65 mm pitch and 24 pin

Application


Adjustment/control of industrial or home-use electronic equipment, such as VCR camera, VCR set, TV, and CRT display.

Block Diagram


RENESAS

Pin Arrangement

Pin Description

Pin No.	Pin Name	Function
20	SI	Serial data input pin. Enters serial data of 16-bit in length.
21	SO	Outputs data from 16-bit shift register that reads serial data or parallel data.
19	CLK	Shift clock input pin. At the rise of shift clock, input signal from the SI pin is entered into the 16-bit shift register.
22	ĒN	Entry of low level into the $\overline{\text{EN}}$ pin starts to read data. Putting 16-bit data at high level after input loads the input data to a specified register.
1	A1	Special output pin for 8-bit D/A converter (DAC)
2	A2	
3	A3	
4	A4	
5	D11/A5	Pin that shares I/O and DAC output. Settings can be selected with serial data. D4 to D11
6	D10/A6	are connected to the V _{DD} power supply.
7	D9/A7	
8	D8/A8	
9	D7/A9	
10	D6/A10	
11	D5/A11	
12	D4/A12	
18	D0	Digital input output pin.
17	D1	
16	D2	
15	D3]
14	V _{CC}	Digital block power supply pin.
24	GND	GND pin
13	V _{DD}	Power supply pin in analog block and reference voltage input pin on the upper side of D/A converter
23	RESET	RESET pin

Block Diagram for Explanation of Terminals

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Conditions
Digital supply voltage	V _{CC}	-0.3 to +7.0	V	
Analog supply (D/A converter upper reference voltage)	V _{DD}	-0.3 to +7.0	V	
Input voltage	V _{IN}	-0.3 to V _{CC} + 0.3	V	V _{CC} supply side pin
Output voltage	Vout	-0.3 to V _{CC} + 0.3	V	V _{CC} supply side pin
Input voltage	V _{IN}	–0.3 to V _{DD} + 0.3	V	V _{DD} supply side pin
Output voltage	Vout	-0.3 to V _{DD} + 0.3	V	V _{DD} supply side pin
Power dissipation	Pd	200	mW	
Operating temperature	Topr	-20 to +85	°C	
Storage temperature	Tstg	-40 to +125	°C	

Electrical Characteristics

<Recommended Operating Condition>

Item	Symbol	Ratings	Unit	Conditions		
Digital supply voltage	V _{CC}	2.7 to 5.5	V			
Analog supply	V _{DD}	2.7 to 5.5	V	$V_{DD} \geq V_{CC}$		
(D/A converter upper reference voltage)						
Input pin voltage (V _{CC} part)	V _{IN}	0 to V _{CC}	V	EN, SI, D0 to D3		
Output pin voltage (V _{CC} part)	V _{OUT}	0 to V_{CC}	V	SO, D0 to D3		
Input pin voltage (V _{DD} part)	V _{IN}	0 to V _{DD}	V	RESET, D4/A12 to D11/A5		
Output pin voltage (V _{DD} part)	V _{OUT}	0 to V_{DD}	V	A1 to A4, D4/A12 to D11/A5		

<Digital Part (V_{cc}) >

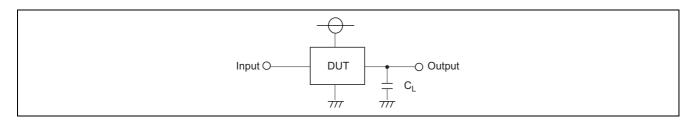
		C	$V_{\rm CC} = 2.7$ to 5	.5 V, Ta = -20) to +85°	C, unless otherwise noted.)
			Limits			
Item	Symbol	Min	Тур	Max	Unit	Conditions
Supply voltage	V _{CC}	2.7	3.0	5.5	V	
Supply current	Icc	—	0.2	2.5	mA	CLK = 1 MHz operation,
						$V_{CC} = 3 \text{ V}, \text{ I}_{AO} = 0 \mu\text{A}$
Input leak current	I _{ILK}	-10	_	10	μΑ	$V_{IN} = 0$ to V_{CC}
Input low voltage	VIL	—	_	0.2 V _{CC}	V	
Input high voltage	VIH	0.5 V _{CC}	_	—	V	
Output low voltage	V _{OL}	—	_	0.4	V	I _{OL} = 2.5 mA
Output high voltage	V _{OH}	$V_{CC} - 0.4$	_	—	V	I _{OH} = -400 μA
Forward threshold voltage	V _{T+}	—	_	0.5 V _{CC}	V	
(EN, CLK)						
Backward threshold voltage	V _T -	0.2 V _{CC}	—	_	V	
(EN , CLK)						

<Digital Part (V_{DD}) >

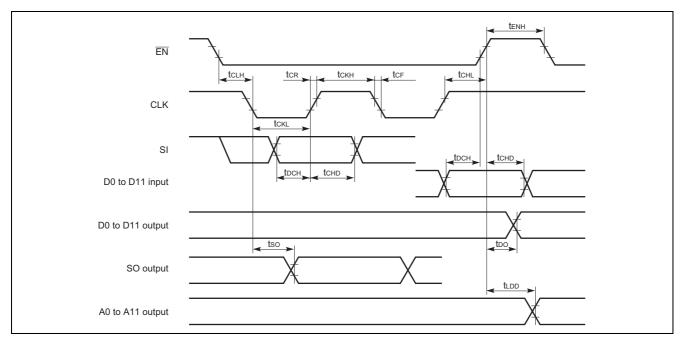
(V_{DD} = 2.7 to 5.5 V, Ta = -20 to +85°C, unless otherwise noted.)

			Limits			
Item	Symbol	Min	Тур	Max	Unit	Conditions
Supply voltage	V _{DD}	2.7	3.0	5.5	V	
Input leak current	l _{iLK}	-10	—	10	μA	$V_{IN} = 0$ to V_{DD}
Input low voltage	V _{IL}	_	—	$0.2 V_{DD}$	V	
Input high voltage	V _{IH}	$0.5 V_{DD}$	—	—	V	
Output low voltage	V _{OL}	_	—	0.4	V	I _{OL} = 2.5 mA
Output high voltage	V _{OH}	$V_{DD}-0.4$		_	V	I _{OH} = -400 μA

Note: For circuit current of V_{DD}, see the analog block.


<Analog Part>

 $(V_{DD} (VrefU) = 2.7 \text{ to } 5.5 \text{ V}, \text{ Ta} = -20 \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.})$


			Limits			
ltem	Symbol	Min	Тур	Max	Unit	Conditions
Dissipation current	I _{DD}		1.5	3.5	mA	VrefU = 3 V input data condition: When maximum current of R-2R rudder is supplied
D/A converter upper reference voltage range	V _{DD} (VrefU)	2.7		5.5	V	In the setup range of reference voltage, all values are not taken with output. Values to be taken depend on the item of buffer amplifier output voltage range.
Buffer amplifier output	V _{AO}	0.1	—	$V_{DD} - 0.1$	V	$I_{AO} = \pm 100 \ \mu A$
voltage range		0.2	—	V _{DD} – 0.2	V	I _{AO} = +500 μA -200 μA
Buffer amplifier output drive range	I _{AO}	-0.3	_	1	mA	Upper saturation voltage = 0.4 V Lower saturation voltage = 0.4 V
Differential nonlinearity error	S _{DL}	-1.0	_	1.0	LSB	$V_{DD} = 2.700 V (VrefU)$ Without load (I _{AO} = +0 μ A)
Nonlinearity error	SL	-1.5	—	1.5	LSB	
Zero code error	SZERO	-2	—	2	LSB	
Full scale error	S _{FULL}	-2	_	2	LSB	
Output capacitive load	Co	_	—	10	μF	
Buffer amplifier output impedance	Ro	_	5		Ω	

AC Characteristics

			Limits				
Item	Symbol	Min	Тур	Max	Unit	Conditions	
Clock low pulse width	t _{CKL}	200	_		ns		
Clock high pulse width	t _{скн}	200	—	—	ns		
Clock rise time	t _{CR}	—	—	200	ns		
Clock fall time	t _{CF}	—	—	200	ns		
Data setup time	t _{DCH}	30	—	—	ns		
Data hold time	t _{CHD}	60	—	—	ns		
Clock (EN) setup time	t _{CLH}	100	—	—	ns		
EN setup time	t _{CHL}	200	—	—	ns		
EN high hold time	t _{ENH}	200	—	—	ns		
Serial data output delay time	t _{SO}	—	200	350	ns	C _L = 100 pF	
Parallel data output delay time	t _{DO}	—	400	600	ns	C _L = 100 pF	
D/A output setting time	t _{LDD}			100	μs	$C_L \le 100 \text{ pF}, V_{AO}: 0.1 \leftrightarrow 2.6 \text{ V}$ Until output takes ±2 LSB of the final value.	

Timing Chart

Data Structure

Serial of	data														
MSB															LSB
S15	S14	S13	S12	S11	S10	S9	S8	S7	S6	S5	S4	S3	S2	S1	S0
				Data for	DAC an	d I/O exp	ander –					-	- Addre	ess data	

Address Data

S3	S2	S1	S0	Setup		
0	0	0	0	(a)		
0	0	0	1	A1 selection		
0	0	1	0	A2 selection		
0	0	1	1	A3 selection		
0	1	0	0	A4 selection		
0	1	0	1	A5 selection		
0	1	1	0	A6 selection		
0	1	1	1	A7 selection		
1	0	0	0	A8 selection		
1	0	0	1	A9 selection		
1	0	1	0	A10 selection		
1	0	1	1	A11 selection		
1	1	0	0	A12 selection		
1	1	0	1	I/O expander (serial \rightarrow parallel conversion)		
1	1	1	0	I/O expander (parallel \rightarrow serial conversion)		
1	1	1	1	I/O expander status setup		

• I/O expander (serial \rightarrow parallel conversion)

Outputs data on S4 to S15 to pins D0 to D11.

S3	S2	S1	S0
1	1	0	1

 I/O expander (parallel → serial conversion) Writes data on D0 to D11 pins into S4 to S15.
 When next data communication is provided, outputs data sequentially from SO pin at the rise of the shift clock (CLK).

S3	S2	S1	S0
1	1	1	0

• I/O expander status setup register Sets input/output pin of I/O expanders.

Data: "0" = Input mode (Hi-Z status). "1" = Output mode

S3	S2	S1	S0		
1	1	1	1		

Data	S15	S14	S13	S12	S11	S10	S9	S8	S7	S6	S5	S4
	¥	¥	¥	¥	¥	¥	¥	¥	¥	↓	¥	¥
Pin	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO

DAC Data

S15	S14	S13	S12	S11	S10	S 9	S8	S 7	S6	S5	S4 [*]	Analog output voltage (Reference voltage on the lower side = 0.0 V fixed)
0	0	0	0	0	0	0	0	Х	Х	Х	0	(V _{DD} / 256) × 1 [V] (1 LSB)
0	0	0	0	0	0	0	1	Х	Х	Х	0	$(V_{DD} / 256) \times 2 [V]$ (2 LSB)
0	0	0	0	0	0	1	0	Х	Х	Х	0	(V _{DD} / 256) × 3 [V] (3 LSB)
:	:	:	:	:	:	:	:	:	:	:	:	:
1	1	1	1	1	1	1	0	Х	Х	Х	0	$(V_{DD} / 256) \times 255 [V]$ (255 LSB)
1	1	1	1	1	1	1	1	Х	Х	Х	0	V _{DD} [V] (256 LSB)
Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1	High-impedance
												(I/O expander selected)

Note: X: Don't care

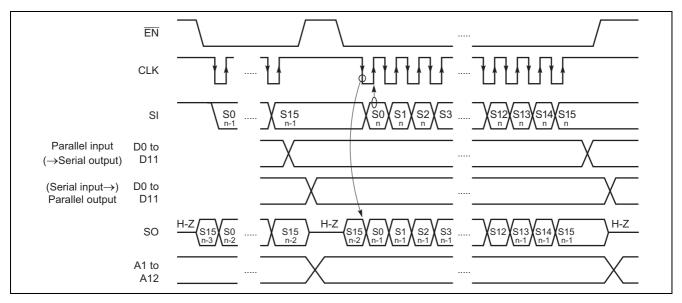
Only A5 to A12 outputs are available for DAC output by S4 and Hi-Z conversion.

(a) Command to get DAC out	wit to High immediance (DACHIZ command)
(a) Command to set DAC on	\mathbf{D}
(u) commune to set bille out	out to High-impedance (DACHiZ command)

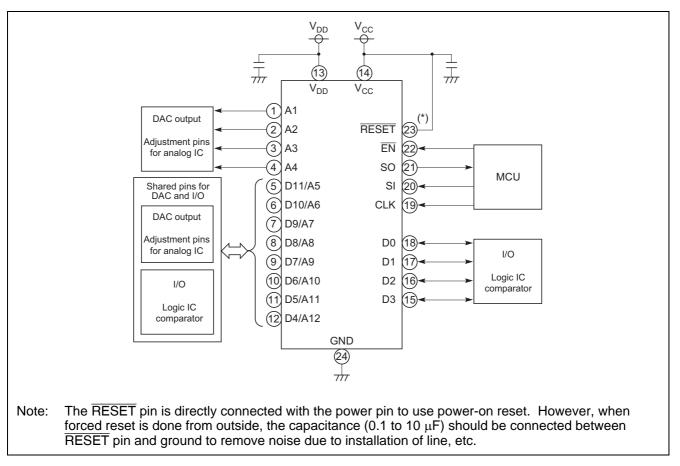
S15	S14	S13	S12	S11	S10	S9	S8	S7	S6	S5	S4	S3	S2	S1	S0	Analog output voltage
Х	Х	Х	Х	Х	Х	Х	Х	1	1	0	1	0	0	0	0	Sets D/A output of A5 to
																A12 to High-impedance.

(b) Initial status just after power is turned on:

Low level output from A1 to A4 (set to 00h)


D4/A12 to D11/A5: DAC output of high-impedance (Hi-Z), I/O of input mode (Hi-Z)

D0 to D3: input mode (Hi-Z)


(c) The DACHiZ command is effective only for DAC settings (A5 to A12), but not for the I/O ports (D0 to D11)

Note: To change the status of pins D4/A12 to D11/A5, switch both analog and digital after setup of high-impedance.

Timing Chart (Model)

Application Example

Precaution for Use

This IC has two power supply pins and a ground pin. Superimposition of these pins with ripple and spike noise may cause reduction of conversion accuracy and occurrence of malfunction. Be sure to insert a capacitor between each power supply and the GND pin to stabilize D/A converting operation.

The output buffer amplifier of this IC has strong characteristics against capacitive load. Accordingly, when the capacitance (10 μ F Max) is connected between output and ground to remove jitter and noise due to installation of output line, no problem may occur in operation of DAC. However, notice that the removal results in lengthening the settling time.

This IC also provides power-on reset function. To assure the resetting operation, power supply should be turned on in the order of timing shown in the diagram below.

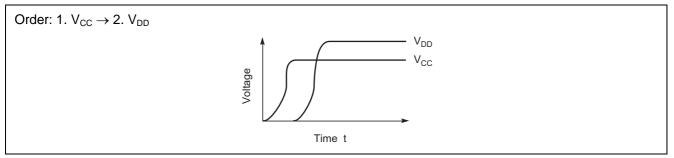
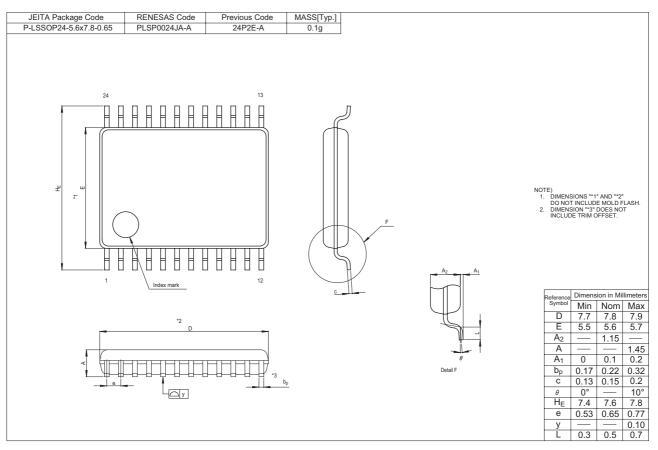



Figure 1 Order for Power-on

Package Dimensions

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the date this document, when exporting the products or the technology described herein, you should follow the applicable export control laws and regulations.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a set exception of protein ting from the date this document. Dut Renesas asproaces for description and the applicability of the states of the date this document.
 When using or otherwise relevance on military applications, approcessa relevance and the date date date date. diagrams, charts, programs, algorithms, and application is additional and different information in this document.
 Renesas has used reasonable care in compiling the information in this document. Dut Renesas assumes no liability what susteme to the step of a philositical and the step of the step o

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com