

带复位功能 耐高压电压稳压器

www.sii-ic.com

© Seiko Instruments Inc., 1997-2010

Rev.8.0_00

S-87x 系列是将高精度电压检测电路和线性电压稳压器单芯片化的一种低消耗电流、带复位功能的耐高压电压 稳压器。

准备了丰富的可供锂离子电池组使用的产品。

■ 特点

● 高精度输出电压 ±2.4 %

2.5 V~5.8 V (进阶单位为 0.1 V)

• 高精度检测电压 ±2.4 % (F 型产品的解除电压精度为±1.1 %)

2.1 V~11.3 V (进阶单位为 0.1 V)

低输入输出电压差 0.15 V (典型值) (I_{OUT}=30 mA、V_{OUT}=5.0 V 时)

0.45 V (典型值) (I_{OUT}=30 mA、V_{OUT}=3.0 V 时)

超低消耗电流 工作时: 8 µA (最大值)

休眠时: 3.5 µA (最大值) (仅限 C/E/G 型产品)

● 工作电压范围很宽 24 V (最大值)

• 工作温度范围很宽 -40 °C ~ +85 °C

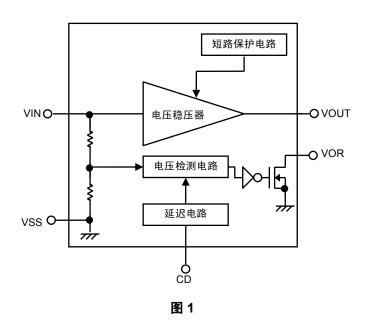
• 内置了延迟电路或电源关闭电路

• 内置短路保护电路

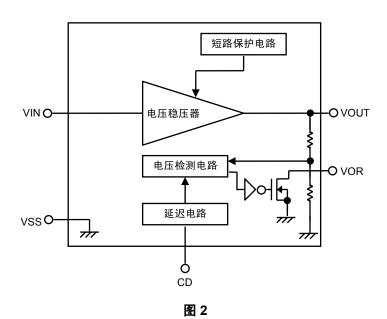
无铅、Sn 100%、无卤素*1

*1. 详情请参阅"■ 产品型号的构成"。

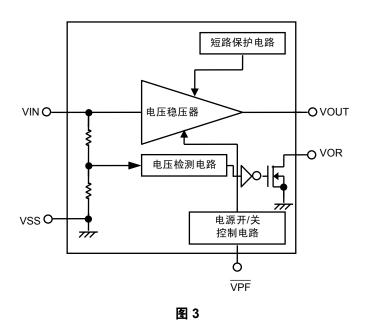
■ 用途


- 使用电池的设备、录像机、照相机、通信设备的稳压电源及复位电路
- 锂离子可充电电池组

■ 封装


SOT-89-5

■ 框图


1. A/F 型

2. B型

3. C型

4. E型

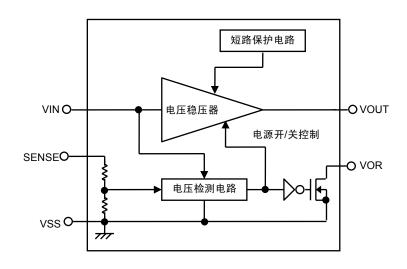
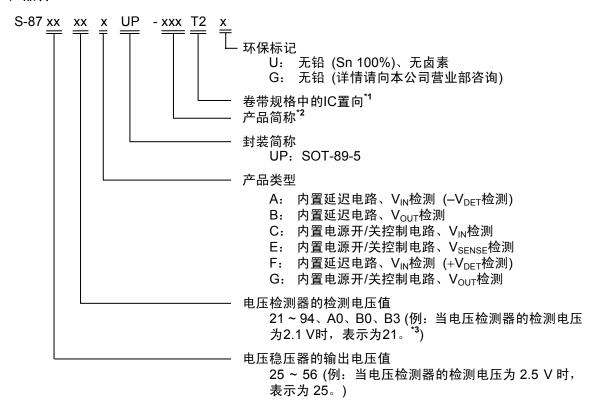


图 4

5. G型

图 5


■ 产品型号的构成

1. 功能一览表

表 1

	电压检测器	检测电压	解除电压		电源开/关	控制功能
类型名称	(VD)	(-V _{DET}) 精度 [%]	(+V _{DET}) 精度 [%]	延迟电路	VR	VD
A型	V _{IN} 检测	±2.4		有	无	无
B型	V _{OUT} 检测	±2.4		有	无	无
C型	V _{IN} 检测	±2.4		无	有	无
E型	V _{SENSE} 检测	±2.4		无	有	无
F型	V _{IN} 检测		±1.1	有	无	无
G型	V _{out} 检测	±2.4	_	无	有	无

2. 产品名

- *1. 请参阅卷带图。
- *2. 关于产品简称,请参阅「4. 产品名目录」的表 2~3。
- *3. 10.0 V 时为 A0、11.0 V 时为 B0、11.3 V 时为 B3。

3. 封装

封装名		图面号码	
到	封装图面	卷带图面	带卷图面
SOT-89-5	UP005-A-P-SD	UP005-A-C-SD	UP005-A-R-SD

4. 产品名目录

表2(1/2)

VR输出电压	VD检测电压	S-87xxxxA系列	S-87xxxxB系列	S-87xxxxC系列
[V]	[V]	O-07 XXXX/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	G-07 XXXXD3; 3·j	0-07 XXXX (5)(5)(
5.6	3.5		S-875635BUP-AGAT2x	_
5.2	9.4			S-875294CUP-AHCT2x
	7.1			S-875271CUP-AHAT2x
	5.5			S-875255CUP-AHBT2x
5.0	11.0			S-8750B0CUP-ACGT2x
	7.7	S-875077AUP-AAFT2x	_	S-875077CUP-ACFT2x
	6.1	_	_	S-875061CUP-ACHT2x
	4.5	S-875045AUP-AAAT2x	S-875045BUP-ABAT2x	S-875045CUP-ACAT2x
	4.3	S-875043AUP-AABT2x	S-875043BUP-ABBT2x	S-875043CUP-ACBT2x
	4.1	S-875041AUP-AACT2x	S-875041BUP-ABCT2x	S-875041CUP-ACCT2x
	3.9	S-875039AUP-AADT2x	S-875039BUP-ABDT2x	S-875039CUP-ACDT2x
	3.7	S-875037AUP-AAET2x	S-875037BUP-ABET2x	S-875037CUP-ACET2x
	3.4		S-875034BUP-ABFT2x	
	2.9		S-875029BUP-ABHT2x	_
	2.1		S-875021BUP-ABGT2x	
3.3	7.7	S-873377AUP-0AAT2x		
	6.1			S-873361CUP-AOHT2x
	4.1	_		S-873341CUP-AOCT2x
	2.8	S-873328AUP-0ABT2x		
	2.5		S-873325BUP-ALAT2x	
3.0	6.9			S-873069CUP-AFFT2x
	5.9			S-873059CUP-AFGT2x
	2.5	S-873025AUP-ADAT2x	S-873025BUP-AEAT2x	S-873025CUP-AFAT2x
	2.4	S-873024AUP-ADBT2x	S-873024BUP-AEBT2x	S-873024CUP-AFBT2x
	2.3	S-873023AUP-ADCT2x	S-873023BUP-AECT2x	S-873023CUP-AFCT2x
	2.2	S-873022AUP-ADDT2x	S-873022BUP-AEDT2x	S-873022CUP-AFDT2x
	2.1	S-873021AUP-ADET2x	S-873021BUP-AEET2x	S-873021CUP-AFET2x
2.6	2.2	_	S-872622BUP-OLAT2x	_

表2(2/2)

		I	I
VR输出电压	VD检测电压	S-87xxxxE系列	S-87xxxxG系列
[V]	[V]		
5.0	11.0	S-8750B0EUP-AJIT2x	
	8.7	S-875087EUP-AJGT2x	<u>—</u>
	7.7	S-875077EUP-AJFT2x	_
	6.1	S-875061EUP-AJHT2x	<u> </u>
	4.2		S-875042GUP-ANCT2x
	3.7	_	S-875037GUP-ANET2x
	3.3	S-875033EUP-AJAT2x	
	3.0	S-875030EUP-AJBT2x	
3.3	11.0	S-8733B0EUP-APCT2x	_
	10.0	S-8733A0EUP-APFT2x	_
	8.2	S-873382EUP-APHT2x	
	7.2	S-873372EUP-APET2x	
	6.4	S-873364EUP-APGT2x	
	4.8	S-873348EUP-APDT2x	
	3.0	S-873330EUP-APBT2x	
3.0	11.3	S-8730B3EUP-AMFT2x	
	8.2	S-873082EUP-AMCT2x	
	6.2	S-873062EUP-AMBT2x	
	5.0	S-873050EUP-AMET2x	_
	4.2	S-873042EUP-AMDT2x	_
2.5	4.8	S-872548EUP-AZBT2x	_
	3.0	S-872530EUP-AZCT2x	
	2.6	S-872526EUP-AZAT2x	

注意 在 S-87xxxxB 系列以及 S-87xxxxG 系列产品中,电压稳压器的输出电压与电压检测器的检测电压数值相近的情况下,有可能因为电压稳压器的过渡响应而导致发生误检测。在设置电压的时候,请在充分地探讨过渡响应特性的基础上,再予以决定。

备注1. x: G 或 U

2. 用户需要 Sn 100%、无卤素产品时,请选择环保标记为"U"的产品。

表3

VR输出电压 [V]	VD解除电压 [V]	S-87xxxxF系列
5.0	8.7	S-875087FUP-AKAT2x

备注1. x: G 或 U

2. 用户需要 Sn 100%、无卤素产品时,请选择环保标记为"U"的产品。

■ 引脚排列图

SOT-89-5 Top view

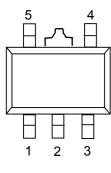


图 6

表 4

引脚号	符号	描述
1	VOUT	电压稳压器的输出端子
2	VSS	GND端子
3	CD (A/B/F型)	电压检测电路的延迟外接电容器连接端 子
	VPF (C/G型)	电源关闭电路的输入端子
	SENSE (E型)	电压检测电路的电压监视端子
4	VOR	电压检测电路的输出端子,N沟道开路漏极
5	VIN	正电源输入端子

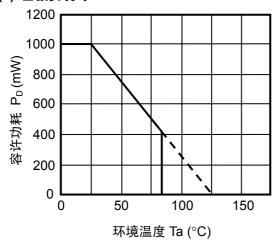
■ 绝对最大额定值

表5

(除特殊注明以外: Ta=25°C)

项目	符号	额定值	单位
输入电压*1	V_{IN}	V_{SS} -0.3 ~ V_{SS} +26	V
	V _{CD} (A/B/F型)	$V_{SS}-0.3 \sim V_{IN}+0.3$	
	 Vpf (C/G型)	V_{SS} -0.3 ~ V_{SS} +26	
	V _{SENSE} (E型)		
输出电压	V_{OUT}	$V_{SS}-0.3 \sim V_{IN}+0.3$	
电压检测电路的输出电压	V_{OR}	V_{SS} -0.3 ~ V_{SS} +26	
容许功耗	P_{D}	500 (基板未安装时)	mW
		1000 ^{*2}	
工作环境温度	T_{opr}	−40 ~ +85	°C
保存温度	T_{stg}	−40 ~ +125	

- *1. 若施加超过上述输入电压(V_{SS}+26 V)的脉冲性(μs)噪声,会导致 IC 的破损,务请注意。
- *2. 基板安装时


[安装基板]

(1) 基板尺寸: 114.3 mm×76.2 mm×t1.6 mm

(2) 名称: JEDEC STANDARD51-7

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有 可能造成产品劣化等物理性的损伤。

(1) 基板安装时

(2) 基板未安装时

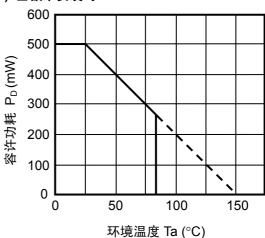


图 7 封装容许功耗

■ 电气特性

1. S-8750xxA 系列/S-8750xxB 系列

表 6

					(1	31 13 MINT	10/11 Tu-	
项目	符号	条件	:	最小值	典型值	最大值	单位	测定 电路
电压稳压器部分								
输出电压	V _{OUT}	V _{IN} =7 V, I _{OUT} =30	V _{IN} =7 V, I _{OUT} =30 mA			5.12	V	1
输入输出电压差	V_{dif}	I _{OUT} =30 mA		_	0.15	0.40		
输入稳定度	ΔV_{OUT1}	$V_{IN}=6 \sim 24 \text{ V}, I_{OU}$	_{IT} =30 mA	_	15	50	mV	
负载稳定度	ΔV_{OUT2}	V _{IN} =7 V, I _{OUT} =50	μA ~ 40 mA	_	15	50		
输入电压	V_{IN}	_		_	_	24	V	
输出电压温度系数	$\frac{\Delta V_{\text{OUT}}}{\Delta Ta}$	V _{IN} =7 V, I _{OUT} =30 Ta=-40 °C ~ +85	•	_	±0.38	±1.52	mV/°C	
 电压检测器部分	ΔIU	100 100 100						
工作电压	V_{opr}	_	_			24	V	2
延迟时间*1	t _{pd}	C _D =4.7 nF	C _D =4.7 nF		27	41	ms	3
检测电压温度特性	$\frac{\Delta - V_{\text{DET}}}{\Delta \text{Ta}}$	Ta=-40 °C ~ +85	Ta=-40 °C ~ +85 °C		±0.5	±2.0	mV/°C	2
检测电压	$-V_{DET}$	S-875045A/B		4.392	4.50	4.608	V	
		S-875043A/B		4.196	4.30	4.404		
		S-875041A/B		4.001	4.10	4.199		
		S-875039A/B		3.806	3.90	3.994		
		S-875037A/B		3.611	3.70	3.789		
		S-875021B	1	2.049	2.10	2.151		
吸收电流	I _{DOUT}	N 沟道,V _{DS} =0.5 V	V _{IN} =1.3 V	0.25	0.60		mA	4
			V _{IN} =2.4 V	1.50	2.60			
			V _{IN} =3.6 V	3.00	4.50			1
泄漏电流	I _{LEAK}	N 沟道,V _{DS} =24	V, V _{IN} =10 V			0.1	μA	
滞后幅度	V _{HYS}	S-875045A/B		−V _{DET} ×0.01		-V _{DET} ×0.025	V	2
		S-875043A/B ~ S-875021A/B		-V _{DET} ×0.03		-V _{DET} ×0.08		
综合								
消耗电流 ^{*2}	I _{SS}	V _{IN} =7 V,无负载			3	8	μΑ	5

^{*1.} t_{pd} (ms)=(3.18 (最小值)、5.74 (典型值)、8.73 (最大值))×C_D (nF)

^{*2.} 除 C_D 的充电电流以外。

2. S-8730xxA 系列/S-8730xxB 系列

表 7

		(水中水口				3 W () T . 13 4	77 · Iu	,
项目	符号	条件	‡	最小值	典型值	最大值	单位	测定 电路
电压稳压器部分								
输出电压	V_{OUT}	V _{IN} =5 V, I _{OUT} =30	mA	2.928	3.000	3.072	V	1
输入输出电压差	V_{dif}	I _{OUT} =30 mA		_	0.45	0.70		
输入稳定度	ΔV_{OUT1}	$V_{IN}=4 \sim 24 \text{ V}, I_{OUT}$	=30 mA	_	15	50	mV	
负载稳定度	ΔV_{OUT2}	$V_{IN}=5 V, I_{OUT}=50$	μA ~ 40 mA	_	15	50		
输入电压	V _{IN}		-	_	_	24	V	
输出电压温度系数	$\frac{\Delta V_{\text{OUT}}}{\Delta Ta}$	V _{IN} =5 V, I _{OUT} =30 I Ta=-40 °C ~ +85		_	±0.23	±0.92	mV/°C	
电压检测器部分		<u> </u>		I.	I.	I.	I.	
工作电压	V _{opr}	_	1.3		24	V	2	
延迟时间 ^{*1}	t _{pd}	C _D =4.7 nF		15	27	41	ms	3
检测电压温度特性	$\frac{\Delta - V_{DET}}{\Delta Ta}$	Ta=-40 °C ~ +85	°C		±0.3	±1.2	mV/°C	2
检测电压	$-V_{DET}$	S-873025A/B		2.440	2.500	2.560	V	
		S-873024A/B		2.342	2.400	2.458		
		S-873023A/B		2.244	2.300	2.356		
		S-873022A/B		2.147	2.200	2.253		
		S-873021A/B		2.049	2.100	2.151		
吸收电流	I _{DOUT}	N 沟道, V _{DS} =0.5 V	V _{IN} =1.3 V 下述以外	0.25	0.60		mA	4
			V _{IN} =2.4 V S-873025A/B	1.50	2.60	_		
泄漏电流	I _{LEAK}	N 沟道, V _{DS} =24 V	, V _{IN} =10 V			0.1	μΑ	
滞后幅度	V _{HYS}	_		−V _{DET} ×0.03		−V _{DET} ×0.08	V	2
综合								
消耗电流*2	I _{SS}	V _{IN} =5 V, 无负载			3	8	μΑ	5

^{*1.} t_{pd} (ms)=(3.18 (最小值)、5.74 (典型值)、8.73 (最大值))×C_D (nF)

^{*2.} 除 C_D 的充电电流以外。

3. S-875635B

表 8

(陈行然注明以7: Ta=z								-20 0,
项目	符号	条件	条件			最大值	单位	测定 电路
电压稳压器部分								
输出电压	V_{OUT}	$V_{IN} = 7.6 \text{ V}, I_{OUT} = 3$	30 mA	5.465	5.60	5.735	V	1
输入输出电压差	V_{dif}	I _{OUT} =30 mA		_	0.15	0.40		
输入稳定度	ΔV_{OUT1}	$V_{IN}=6.6 \sim 24 \text{ V, I}$	_{OUT} =30 mA	_	15	50	mV	
负载稳定度	ΔV_{OUT2}	$V_{IN}=7.6 \text{ V},$ $I_{OUT}=50 \mu\text{A} \sim 40$	mA	_	15	50		
输入电压	V_{IN}			_	1	24	V	
 输出电压温度系数 	$\frac{\Delta V_{\text{оит}}}{\Delta Ta}$	V _{IN} =7.6 V, I _{OUT} =3 Ta=-40 °C ~ +85	•	_	±0.43	±1.72	mV/°C	
电压检测器部分								
工作电压	V_{opr}	_		1.3		24	V	2
延迟时间 ^{*1}	t_{pd}	C _D =4.7 nF		15	27	41	ms	3
检测电压温度特性	$\frac{\Delta - V_{\text{DET}}}{\Delta Ta}$	Ta=-40 °C ~ +85	5 °C	_	±0.3	±1.2	mV/°C	2
检测电压	$-V_{DET}$			3.416	3.50	3.584	V	
吸收电流	I _{DOUT}	N 沟道, V _{DS} =0.5 V	V _{IN} =1.3 V	0.25	0.60		mA	4
			V _{IN} =2.4 V	1.50	2.60			
泄漏电流	I _{LEAK}	N 沟道, V _{DS} =24 \	N 沟道, V _{DS} =24 V, V _{IN} =10 V		_	0.1	μΑ	
滞后幅度	V _{HYS}	_		-V _{DET} ×0.03		-V _{DET} ×0.08	V	2
综合								
消耗电流 ^{*2}	I _{SS}	V _{IN} =7.6 V,无负载		_	4	8	μΑ	5

^{*1.} t_{pd} (ms)=(3.18 (最小值)、5.74 (典型值)、8.73 (最大值))×C_D (nF) *2. 除 C_D 的充电电流以外。

4. S-873325B

表 9

项目	符号	条件	最小值	典型值	最大值	单位	测定 电路
电压稳压器部分							
输出电压	V _{OUT}	V _{IN} =5.3 V, I _{OUT} =30 mA	3.220	3.300	3.380	V	1
输入输出电压差	V_{dif}	I _{OUT} =30 mA	_	0.45	0.70		
输入稳定度	ΔV_{OUT1}	$V_{IN}=4.3 \sim 24 \text{ V}, I_{OUT}=30 \text{ mA}$	_	15	50	mV	
负载稳定度	ΔV_{OUT2}	V_{IN} =5.3 V, I_{OUT} =50 µA ~ 40 mA	_	15	50		
输入电压	V_{IN}		_	_	24	V	
输出电压温度系数	$\frac{\Delta V_{\text{OUT}}}{\Delta Ta}$	V _{IN} =5.3 V, I _{OUT} =30 mA, Ta=-40 °C ~ +85°C	_	±0.25	±1.00	mV/°C	
电压检测器部分							•
工作电压	V_{opr}		1.3		24	V	2
延迟时间*1	t _{pd}	C _D =4.7 nF	15	27	41	ms	3
检测电压温度特性	$\frac{\Delta - V_{\text{DET}}}{\Delta \text{Ta}}$	Ta=-40 °C ~ +85 °C		±0.2	±0.8	mV/°C	2
检测电压	$-V_{DET}$		2.440	2.500	2.560	V	
吸收电流	I _{DOUT}	N 沟道, V _{DS} =0.5 V, V _{IN} =1.3 V	0.25	0.60		mA	4
泄漏电流	I _{LEAK}	N 沟道, V _{DS} =24 V, V _{IN} =10 V			0.1	μΑ	
滞后幅度	V _{HYS}	_	−V _{DET} ×0.03		$-V_{DET} \times 0.08$	V	2
综合							
消耗电流 ^{*2}	I _{SS}	V _{IN} =5.3 V, 无负载		4	8	μΑ	5
*4 · / \ /O · /O ·		4 / 典 型 は 、					

^{*1.} t_{pd} (ms)=(3.18 (最小值)、5.74 (典型值)、8.73 (最大值))×C_D (nF) *2. 除 C_D 的充电电流以外。

5. S-8750xxC 系列/S-875037G

表 10(1/2)

					(1001000	小工巧么人	, . u	
项目	符号	条	件	最小值	典型值	最大值	单位	测定 电路
电压稳压器部分		•		•		•		
输出电压	V _{OUT}	V _{IN} =7 V, I _{OUT} =30) mA	4.88	5.00	5.12	V	1
输入输出电压差	V_{dif}	I _{OUT} =30 mA			0.15	0.40		
输入稳定度	ΔV_{OUT1}	V _{IN} =6 ~ 24 V, I _{OI}	_{JT} =30 mA	_	15	50	mV	
负载稳定度	ΔV_{OUT2}	V _{IN} =7 V, I _{OUT} =50		_	15	50		
输入电压	V _{IN}			_	_	24	V	
输出电压温度系数	$\frac{\Delta V_{\text{OUT}}}{\Delta Ta}$	V _{IN} =7 V, I _{OUT} =30 Ta=-40 °C ~ +8		_	±0.38	±1.52	mV/ °C	
电源关闭时的 输出电压	V _{ON/OFF}	$V_{IN}=7 \text{ V}, \overline{V_{PF}}=\text{"L}$ $R_L=1 \text{ M}\Omega$	"	_	_	0.1	V	6
电压检测器部分	•					l .		
工作电压	V_{opr}	_	_	1.3		24	V	2
检测电压温度特性	$\frac{\Delta - V_{DET}}{\Delta Ta}$	Ta=-40 °C ~ +85 °C	S-8750B0C	_	±0.8	±3.2	mV/ °C	
			S-875077C		±0.6	±2.4		
			S-875061C ~ S-875037C, S-875037G	_	±0.5	±2.0		
检测电压	$-V_{DET}$	S-8750B0C		10.736	11.00	11.264	V	
		S-875077C		7.515	7.70	7.885		
		S-875061C		5.953	6.10	6.247		
		S-875045C		4.392	4.50	4.608		
		S-875043C		4.196	4.30	4.404		
		S-875041C		4.001	4.10	4.199		
		S-875039C		3.806	3.90	3.944		
		S-875037C/S-87	1	3.611	3.70	3.789		
吸收电流	I _{DOUT}	N 沟道, V _{DS} =0.5 V	V _{IN} =1.3 V	0.25	0.60		mA	4
			V _{IN} =2.4 V	1.50	2.60			
			V _{IN} =3.6 V	3.00	4.50			
泄漏电流	I _{LEAK}	N 沟道, V _{DS} =24 V	V _{IN} =10 V S-875077C ~ S-875037C, S-875037G V _{IN} =15 V S-8750B0C	_	_	0.1	μA	
滞后幅度	V _{HYS}	S-875045C		−V _{DET} ×0.01	_	-V _{DET} ×0.025	V	2
		S-8750B0C ~ S- S-875043C ~ S- S-875037G		-V _{DET} ×0.03	_	-V _{DET} ×0.08		

表 10(2/2)

					(13/13//	ハエ・ハ・ハ・		
项目	符号	条件		最小值	典型值	最大值	单位	测定 电路
综合								
消耗电流	I _{SS}	V _{IN} =7 V, 无负载	S-8750B0C ~ S-875061C		4	8	μΑ	5
			S-875045C ~ S-835037C, S-835037G	_	3	8		
	I _{of}	V _{PF} ="L",电源关i	闭,V _{IN} =7 V		1.5	3.5		
电源关闭	V _{IL}	V _{PF} ="L",电源关i	闭,V _{IN} =7 V	_	_	0.4	V	6
输入电压 	V _{IH}	 V _{PF} ="H",接通电	·····································	2.0				

6. S-8730xxC 系列

表 11

					(1951)	寸/小/エリフィ	አም: Ta=	<u> 20 0)</u>
项目	符号	条件	 / <u></u>	最小值	典型值	最大值	单位	测定 电路
电压稳压器部分	· ·	1		· ·		I.		
输出电压	V _{OUT}	V _{IN} =5 V, I _{OUT} =30	mA	2.928	3.000	3.072	V	1
输入输出电压差	V_{dif}	I _{OUT} =30 mA		_	0.45	0.70		
输入稳定度	ΔV_{OUT1}	V _{IN} =4 ~ 24 V, I _{OU}	_{JT} =30 mA	_	15	50	mV	
负载稳定度	ΔV_{OUT2}	V _{IN} =5 V, I _{OUT} =50		_	15	50		
输入电压	V _{IN}	_		_	_	24	V	
输出电压温度系数	$\frac{\Delta V_{\text{OUT}}}{\Delta \text{Ta}}$	V _{IN} =5 V, I _{OUT} =30 Ta=-40 °C ~ +85		_	±0.23	±0.92	mV/°C	
电源关闭时的 输出电压	V _{ON/OFF}	$V_{IN}=5 V, \overline{V_{PF}}="L$.", R _L =1 ΜΩ	_		0.1	V	6
电压检测器部分					1	t .	1	1
工作电压	V _{opr}	_	_	1.3		24	V	2
检测电压温度特性	$\Delta - V_{\text{DET}}$	Ta=-40 °C ~	S-873069C		±0.5	±2.0	mV/°C	
	ΔTa	+85 °C	S-873025C ~ S-873021C	_	±0.3	±1.2		
检测电压	-V _{DET}	S-873069C		6.734	6.900	7.066	V	
		S-873025C		2.440	2.500	2.560		
		S-873024C		2.342	2.400	2.458		
		S-873023C		2.244	2.300	2.356		
		S-873022C		2.147	2.200	2.253		
		S-873021C	<u> </u>	2.049	2.100	2.151		
吸收电流	I _{DOUT}	N 沟道, V _{DS} =0.5 V	V _{IN} =1.3 V 下述以外	0.25	0.60		mA	4
			V _{IN} =2.4 V S-873069C, S-873025C	1.50	2.60	_		
			V _{IN} =3.6 V S-873069C	3.00	4.50			
泄漏电流	I _{LEAK}	N 沟道, V _{DS} =24 \	V, V _{IN} =10 V			0.1	μA	
滞后幅度	V _{HYS}	_		−V _{DET} ×0.03		−V _{DET} ×0.08	V	2
综合	•	•		•	•		•	•
消耗电流	I _{SS}	V _{IN} =5 V, 无负载			3	8	μA	5
	I _{of}				1.5	3.5		
电源关闭	V _{IL}	V _{PF} ="L",电源关			_	0.4	V	6
输入电压	V_{IH}	 V _{PF} ="H",接通电	已源,V _{IN} =5 V	2.0				

7. S-875271C、S-875255C

表 12

					(130.1	3 22 147 173 -2	ХЛ°: Та-	
 项目	符号	条件	件	最小值	典型值	最大值	单位	测定 电路
电压稳压器部分								
输出电压	V _{OUT}	V _{IN} =7.2 V, I _{OUT} =3	V _{IN} =7.2 V, I _{OUT} =30 mA		5.20	5.325	V	1
输入输出电压差	V_{dif}	I _{OUT} =30 mA		_	0.15	0.40		
输入稳定度	ΔV_{OUT1}	V _{IN} =6.2 ~ 24 V, I	I _{OUT} =30 mA	_	15	50	mV	
负载稳定度	ΔV_{OUT2}	$V_{IN}=7.2 \text{ V},$ $I_{OUT}=50 \mu\text{A} \sim 40$	mA	_	15	50		
输入电压	V _{IN}	_	_	_	_	24	V	
输出电压温度系数	$\frac{\Delta V_{\text{OUT}}}{\Delta Ta}$	V _{IN} =7.2 V, I _{OUT} =3 Ta=-40 °C ~ +85		_	±0.40	±1.60	mV/°C	
电源关闭时的 输出电压	V _{ON/OFF}	$V_{IN}=7.2 \text{ V}, \overline{V_{PF}}=R_L=1 \text{ M}\Omega$	"L",			0.1	V	6
电压检测器部分						_		_
工作电压	V_{opr}	_	_	1.3		24	V	2
检测电压温度特性	$\Delta - V_{\text{DET}}$	Ta=-40 °C ~	S-875271C		±0.5	±2.0	mV/°C	
	∆Ta	+85 °C	S-875255C		±0.4	±1.6		
检测电压	$-V_{DET}$	S-875271C	•	6.929	7.10	7.271	V	
		S-875255C		5.368	5.50	5.632		
吸收电流	I _{DOUT}	N 沟道, V _{DS} =0.5 V	V _{IN} =1.3 V	0.25	0.60		mA	4
			V _{IN} =2.4 V	1.50	2.60			
			V _{IN} =3.6 V	3.00	4.50	—		
泄漏电流	I _{LEAK}	N 沟道, V _{DS} =24 \	V, V _{IN} =10 V			0.1	μA	
滞后幅度	V_{HYS}	_	_	-V _{DET} ×0.03		−V _{DET} ×0.08	V	2
综合								
消耗电流	I _{SS}	V _{IN} =7.2 V,无负i	载 ————————————————————————————————————	_	4	8	μA	5
	I _{of}	V _{PF} ="L",电源关i	闭,V _{IN} =7.2 V	_	1.5	3.5		
电源关闭 输入电压	V _{IL}	V _{PF} ="L",电源关i	闭,V _{IN} =7.2 V	_	_	0.4	V	6
	V _{IH}		已源,V _{IN} =7.2 V	2.0	_	_		

8. S-875294C

表 13

				(13/4)	寸》不/土円/	771. Tu-	- <u>20</u> 0)
项目	符号	条件	最小值	典型值	最大值	单位	测定 电路
电压稳压器部分	•				•		
输出电压	V _{OUT}	V _{IN} =14.4 V, I _{OUT} =30 mA	5.075	5.20	5.325	V	1
输入输出电压差	V_{dif}	I _{OUT} =30 mA	_	0.15	0.40		
输入稳定度	ΔV_{OUT1}	$V_{IN}=6.2 \sim 24 \text{ V}, I_{OUT}=30 \text{ mA}$	_	15	50	mV	
负载稳定度	ΔV_{OUT2}	V _{IN} =14.4 V, I _{OUT} =50 μA ~ 40 mA	_	15	50		
输入电压	V _{IN}	_	_	_	24	V	
输出电压温度系数	$\frac{\Delta V_{\text{OUT}}}{\Delta Ta}$	V _{IN} =14.4 V, I _{OUT} =30 mA, Ta=-40 °C ~ +85°C	_	±0.40	±1.60	mV/°C	
电源关闭时的 输出电压	V _{ON/OFF}	V_{IN} =14.4 V, \overline{V}_{PF} ="L", R_L =1 M Ω	_	_	0.1	V	6
电压检测器部分							
工作电压	V _{opr}		1.3		24	V	2
检测电压温度特性	$\frac{\Delta - V_{DET}}{\Delta Ta}$	Ta=-40 °C ~ +85 °C	_	±0.7	±2.8	mV/°C	
检测电压	-V _{DET}	_	9.174	9.40	9.626	V	
吸收电流	I _{DOUT}	N 沟道, V _{DS} =0.5 V V _{IN} =1.3 V	0.25	0.60	_	mA	4
		V _{IN} =2.4 V	1.50	2.60			
		V _{IN} =3.6 V	3.00	4.50			
泄漏电流	I _{LEAK}	N 沟道, V _{DS} =24 V, V _{IN} =10 V			0.1	μA	
滞后幅度	V _{HYS}	_	-V _{DET} ×0.03	_	-V _{DET} ×0.08	V	2
综合							
消耗电流	I _{SS}	V _{IN} =14.4 V, 无负载	_	4	9	μA	5
	l _{of}		_	2.1	4.7		
电源关闭 输入电压	V _{IL}		_		0.4	V	6
	V _{IH}		2.6	_	_		

9. S-873361C

表 14

					(11	30 3 30 10 == 1	カダイキュ	<u> </u>
项目	符号	条件	=	最小值	典型值	最大值	单位	测定 电路
电压稳压器部分	1						•	
输出电压	V _{OUT}	V _{IN} =5.3 V, I _{OUT} =3	30 mA	3.220	3.300	3.380	V	1
输入输出电压差	V_{dif}	I _{OUT} =30 mA		_	0.45	0.70		
输入稳定度	ΔV_{OUT1}	V _{IN} =4.3 ~ 24 V, I	_{OUT} =30 mA	_	15	50	mV	
负载稳定度	ΔV_{OUT2}	$V_{IN}=5.3 \text{ V},$ $I_{OUT}=50 \mu\text{A} \sim 40$	mA	_	15	50		
输入电压	V _{IN}	_		_	_	24	V	
输出电压温度系数	<u>ΔV_{оυт}</u> ΔTa	V _{IN} =5.3 V, I _{OUT} =3 Ta=-40 °C ~ +85		_	±0.25	±1.00	mV/°C	
电源关闭时的 输出电压	V _{ON/OFF}	$V_{IN}=5.3 \text{ V}, \overline{V_{PF}}=$ $R_L=1 \text{ M}\Omega$	-"L",	_	_	0.1	V	6
电压检测器部分	1			•			•	
工作电压	V_{opr}	_		1.3		24	V	2
检测电压温度特性	$\frac{\Delta - V_{DET}}{\Delta Ta}$	Ta=-40 °C ~ +85	5 °C	_	±0.5	±2.0	mV/°C	
检测电压	$-V_{DET}$	_		5.953	6.100	6.247	V	
吸收电流	I _{DOUT}	N 沟道, V _{DS} =0.5 V	V _{IN} =1.3 V	0.25	0.60	_	mA	4
			V _{IN} =2.4 V	1.50	2.60			
			V _{IN} =3.6 V	3.00	4.50			
泄漏电流	I _{LEAK}	N 沟道, V _{DS} =24 \	V, V _{IN} =10 V			0.1	μA	
滞后幅度	V _{HYS}	_		-V _{DET} ×0.03	_	-V _{DET} ×0.08	V	2
综合								
消耗电流	I _{SS}	V _{IN} =5.3 V,无负	载		4	8	μA	5
	l _{of}	│	闭,	_	1.5	3.5		
电源关闭输入电压	V _{IL}	 V _{PF} ="L",电源关 V _{IN} =5.3 V	:闭,	_	_	0.4	V	6
	V _{IH}		1源,	2.0	_	_		

10. S-8750xxE 系列

表 15

(除特殊注明以外: Ta=25°C、SENSE 端子连接到 VIN 端子)

		(13人)	特殊注明以外:	14-20	O' OLI		エリダエリ Vii	V 2/11) J
项目	符号	条件		最小值	典型值	最大值	单位	测定 电路
电压稳压器部分				•			•	•
输出电压	V _{OUT}	$V_{IN}=7 \text{ V}, I_{OUT}=30 \text{ m}$ $V_{SENSE}=-V_{DET (Typ.)}$		4.88	5.00	5.12	V	1
输入输出电压差	V _{dif}	I _{OUT} =30 mA, V _{SENSE} =-V _{DET (Typ.)} -	+2 V	_	0.15	0.40		
输入稳定度	ΔV_{OUT1}	$V_{IN}=6 \sim 24 \text{ V}, I_{OUT}=V_{SENSE}=-V_{DET (Typ.)}$		_	15	50	mV	
负载稳定度	ΔV_{OUT2}	$V_{IN}=7$ V, $I_{OUT}=50$ μ / $V_{SENSE}=-V_{DET (Typ.)}$		_	15	50		
输入电压	V_{IN}			_		24	V	
输出电压温度系数	$\frac{\Delta V_{\text{OUT}}}{\Delta Ta}$	V_{IN} =7 V, I_{OUT} =30 m Ta=-40 °C ~ +85°C V_{SENSE} =- $V_{DET (Typ.)}$ -	D,	_	±0.38	±1.52	mV/°C	
电压检测时的 输出电压	V _{OUTOFF}	V _{IN} =-V _{DET (Typ.)} -1 \	/, R _L =1 MΩ			0.1	V	6
电压检测器部分				_			_	-
工作电压	V_{opr}			1.3		24	V	2
检测电压温度特性	$\Delta - V_{\text{DET}}$	Ta=-40 °C ~	S-875077E		±0.6	±2.4	mV/°C	
	∆Ta	+85 °C	S-875061E		±0.5	±2.0		
检测电压	-V _{DET}	S-875077E		7.515	7.70	7.885	V	
		S-875061E		5.953	6.10	6.247		
吸收电流	I _{DOUT}	N 沟道, V _{DS} =0.5 V	V _{IN} =1.3 V	0.25	0.60		mA	4
			V _{IN} =2.4 V	1.50	2.60			
			V _{IN} =3.6 V	3.00	4.50			
泄漏电流	I _{LEAK}	N 沟道, V _{DS} =24 V, V _{IN} =-V _{DET (Typ.)} +2 \	/	_		0.1	μA	
SENSE 端子	I _{SENSE}	V _{IN} =7 V,	S-875077E		0.6	1.7		7
输入电流		V _{SENSE} =-V _{DET (Typ.)} +2 V	S-875061E		0.7	1.8		
滞后幅度	V _{HYS}	_		-V _{DET} ×0.03		−V _{DET} ×0.08	V	2
综合			T					,
消耗电流	I_{SS}	$V_{IN}=-V_{DET(Typ.)}+2V$,			4	8	μA	5
		无负载	S-875061E	_	4	9		
	I _{of}	│ V _{IN} =-V _{DET (Typ.)} -1 \ │ 电源关闭	/,		1.5	3.5		
•								

11. S-8730xxE 系列

表 16 (除特殊注明以外: Ta=25 °C、SENSE 端子连接到 VIN 端子)

		(130	符殊注明以外:	14-20	<u> </u>	<u> </u>	<u> </u>	4 > iii
项目	符号	条件		最小值	典型值	最大值	单位	测定 电路
电压稳压器部分								
输出电压	V _{OUT}	$V_{IN}=5 \text{ V}, I_{OUT}=30 \text{ mA},$ $V_{SENSE}=-V_{DET (Typ.)}+2 \text{ V}$		2.928	3.000	3.072	V	1
输入输出电压差	V_{dif}	I_{OUT} =30 mA, V_{SENSE} =- $V_{DET (Typ.)}$ -	+2 V	_	0.45	0.70		
输入稳定度	ΔV_{OUT1}	$V_{IN}=4 \sim 24 \text{ V}, I_{OUT}=V_{SENSE}=-V_{DET (Typ.)}$	+2 V	_	15	50	mV	
负载稳定度	ΔV_{OUT2}	V _{IN} =5 V, I _{OUT} =50 μ/V V _{SENSE} =-V _{DET (Typ.)} -		_	15	50		
输入电压	V _{IN}	_		_	_	24	V	
输出电压温度系数	$\frac{\Delta V_{\text{OUT}}}{\Delta Ta}$	V_{IN} =5 V, I_{OUT} =30 m Ta=-40 °C ~ +85°C V_{SENSE} =- $V_{DET (Typ.)}$ -	Э,	_	±0.23	±0.92	mV/°C	
电压检测时的 输出电压	V _{OUTOFF}	V _{IN} =-V _{DET (Typ.)} -1 V	I , R_L =1 $MΩ$			0.1	V	6
电压检测器部分	•							
工作电压	V_{opr}			1.3		24	V	2
检测电压温度特性	$\Delta - V_{\text{DET}}$	Ta=-40 °C ~	S-873082E		±0.6	±2.4	mV/°C	
	∆Ta	+85 °C	S-873062E		±0.5	±2.0		
检测电压	-V _{DET}	S-873082E		8.003	8.200	8.397	V	
		S-873062E		6.051	6.200	6.349		
吸收电流	I _{DOUT}	N 沟道, V _{DS} =0.5 V	V _{IN} =1.3 V	0.25	0.60		mA	4
			V _{IN} =2.4 V	1.50	2.60			
			V _{IN} =3.6 V	3.00	4.50			
泄漏电流	I _{LEAK}	N 沟道, V _{DS} =24 V, V _{IN} =-V _{DET (Typ.)} +2 V	/			0.1	μA	
SENSE 端子	I _{SENSE}	$V_{IN}=5 V$,	S-873082E		0.6	1.7		7
输入电流		V _{SENSE} =-V _{DET (Typ.)} +2 V	S-873062E		0.6	1.8	-	
滞后幅度	V _{HYS}	_		-V _{DET} ×0.03	_	-V _{DET} ×0.08	V	2
综合								
消耗电流	I _{SS}	$V_{IN} = -V_{DET (Typ.)} + 2 V$		_	4	8	μA	5
	I _{of}	│ V _{IN} =-V _{DET (Typ.)} -1 \ │ 电源关闭	/,		1.5	3.5		

12. S-873330E

表 17 (除特殊注明以外: Ta=25 °C、SENSE 端子连接到 VIN 端子)

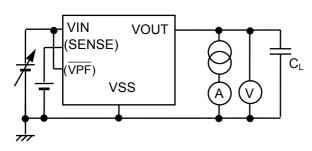
		(除特殊汪明以2	1: Ia-25	C' OFIA		生]女土」 VII	и <i>э</i> рд Ј <i>)</i>
项目	符号	条件	最小值	典型值	最大值	单位	测定 电路
电压稳压器部分							
输出电压	V _{OUT}	V_{IN} =5.3 V, I_{OUT} =30 mA, V_{SENSE} =- $V_{DET (Typ.)}$ +2 V	3.220	3.300	3.380	V	1
输入输出电压差	V_{dif}	I_{OUT} =30 mA, V_{SENSE} =- $V_{DET (Typ.)}$ +2 V	_	0.45	0.70		
输入稳定度	ΔV_{OUT1}	V_{IN} =4.3 ~ 24 V, I_{OUT} =30 mA, V_{SENSE} = $-V_{DET (Typ.)}$ +2 V	_	15	50	mV	
负载稳定度	ΔV_{OUT2}	V_{IN} =5.3 V, I_{OUT} =50 μ A ~ 40 mA V_{SENSE} =- V_{DET} $(T_{\text{Vp.}})$ +2 V		15	50		
输入电压	V _{IN}	_	_	_	24	V	
输出电压温度系数	$\frac{\Delta V_{\text{OUT}}}{\Delta \text{Ta}}$	V_{IN} =5.3 V, I_{OUT} =30 mA, Ta=-40 °C ~ +85°C, V_{SENSE} =- V_{DET} ($Typ.$) +2 V	_	±0.25	±1.00	mV/°C	
电压检测时的 输出电压	V _{OUTOFF}	$V_{IN}=-V_{DET\ (Typ.)}-1\ V,\ R_L=1\ M\Omega$	_	_	0.1	V	6
电压检测器部分				-	-	-	
工作电压	V_{opr}		1.3		24	V	2
检测电压温度特性	$\frac{\Delta - V_{\text{DET}}}{\Delta T a}$	Ta=-40 °C ~ +85 °C	_	±0.2	±0.8	mV/°C	
检测电压	$-V_{DET}$		2.928	3.000	3.072	V	
吸收电流	I _{DOUT}	N 沟道, V _{DS} =0.5 V V _{IN} =1.3 V	0.25	0.60		mA	4
		V _{IN} =2.4 V	1.50	2.60			
泄漏电流	I _{LEAK}	N 沟道, V _{DS} =24 V, V _{IN} =-V _{DET (Typ.)} +2 V		_	0.1	μA	
SENSE 端子 输入电流	I _{SENSE}	V _{IN} =5.3 V, V _{SENSE} =-V _{DET (Typ.)} +2 V	_	0.5	1.3		7
滞后幅度	V _{HYS}		-V _{DET} ×0.03		-V _{DET} ×0.08	V	2
综合							
消耗电流	I _{SS}	V _{IN} =-V _{DET (Typ.)} +2 V,无负载	_	4	8	μA	5
	l _{of}	V _{IN} =-V _{DET (Typ.)} -1 V, 电源关闭	_	1.5	3.5		

13. S-8725xxE 系列

表 18 (除特殊注明以外: Ta=25 °C、SENSE 端子连接到 VIN 端子)

项目	符号	条件		最小值	典型值	最大值	单位	测定 电路
电压稳压器部分	•				•			
输出电压	V _{OUT}	$V_{IN}=4.5 \text{ V}, I_{OUT}=30$ $V_{SENSE}=-V_{DET (Typ.)}$		2.440	2.500	2.560	V	1
输入输出电压差	V_{dif}	I _{OUT} =30 mA, V _{SENSE} =-V _{DET (Typ.)}	+2 V	_	0.65	1.00		
输入稳定度	ΔV_{OUT1}	$V_{IN}=4.5 \sim 24 \text{ V}, I_{OU}$ $V_{SENSE}=-V_{DET (Typ.)}$		_	15	50	mV	
负载稳定度	ΔV_{OUT2}	$V_{IN}=4.5 \text{ V}, I_{OUT}=50$ $V_{SENSE}=-V_{DET (Typ.)}$	$\mu A \sim 40$ mA,	_	15	50		
输入电压	V _{IN}	_		_	_	24	V	
输出电压温度系数	$\frac{\Delta V_{\text{OUT}}}{\Delta \text{Ta}}$	V_{IN} =4.5 V, I_{OUT} =30 Ta=-40 °C ~ +85° V_{SENSE} =- $V_{DET (Typ.)}$	C,		±0.23	±0.92	mV/°C	
电压检测时的 输出电压	V _{OUTOFF}	V _{IN} =-V _{DET (Typ.)} -1	V, $R_L=1 M\Omega$			0.1	V	6
电压检测器部分								
工作电压	V_{opr}	_		1.3	—	24	V	2
检测电压温度特性			S-872548E		±0.5	±2.0		
	$\frac{\Delta - V_{\text{DET}}}{\Delta \text{Ta}}$	Ta=-40 °C ~ +85 °C	S-872530E ~ S-872526E	_	±0.2	±0.8	mV/°C	
检测电压		S-872548E	•	4.685	4.800	4.915		
	$-V_{DET}$	S-872530E		2.928	3.000	3.072	V	
		S-872526E		2.538	2.600	2.662		
吸收电流	I _{DOUT}	N 沟道, V _{DS} =0.5 V	V _{IN} =1.3 V	0.25	0.60	—	mA	4
			V _{IN} =2.4 V	1.50	2.60	—		
			V _{IN} =3.6 V	3.00	4.50			
泄漏电流	I _{LEAK}	N 沟道, V _{DS} =24 V, V _{IN} =-V _{DET (Typ.)} +2 '	V			0.1	μA	
SENSE 端子 输入电流	I _{SENSE}	V _{IN} =4.5 V, V _{SENSE} =-V _{DET (Typ.)} +2 V	S-872548E ~ S-872526E	_	0.5	1.3		7
滞后幅度	V	S-872548E ~ S-87	'2530E	-V _{DET} ×0.03		−V _{DET} ×0.08	V	2
	V _{HYS}	S-872526E		−V _{DET} ×0.02		−V _{DET} ×0.05	V	
综合								
消耗电流	I _{SS}	$V_{IN}=-V_{DET (Typ.)}+2$	V,无负载		4	8	μA	5
	l _{of}	V _{IN} =-V _{DET (Typ.)} -1 ' 电源关闭	V,		1.5	3.5		

14. S-875087F


表 19

				(1.5.1	,		/
符号	条件		最小值	典型值	最大值	单位	测定 电路
V_{OUT}	V _{IN} =7 V, I _{OUT} =30 mA		4.88	5.00	5.12	V	1
V_{dif}	I _{OUT} =30 mA		_	0.15	0.40		
ΔV_{OUT1}	$V_{IN}=6 \sim 24 \text{ V}, I_{OUT}=$	30 mA	_	15	50	mV	
ΔV_{OUT2}	V_{IN} =7 V, I_{OUT} =50 μ A	A ~ 40 mA	_	15	50		
V_{IN}			_		24	V	
ΔV_{OUT}	V _{IN} =7 V, I _{OUT} =30 m.	Α,		10.20	14.50	m\//°C	
∆Ta	Ta=-40 °C ~ +85°C			±0.36	±1.52	IIIV/°C	
V_{opr}	_		1.3		24	V	2
t_{pd}	C _D =4.7 nF		15	27	41	ms	3
$\Delta + V_{DET}$	Ta40 °C ~ ±85 °	C		+0.7	+2.8	m\//°C	2
∆Ta	14- 40 0 100 1			±0.7	± 2 .0	111 77 0	_
+V _{DET}			8 600	8 700	8 800	V	
· · · DE1		1	0.000		0.000	·	
I_{DOUT}	N 沟道, V _{DS} =0.5 V	V _{IN} =1.3 V	0.25	0.60		mA	4
		V _{IN} =2.4 V	1.50	2.60			
		V _{IN} =3.6 V	3.00	4.50			
I_{LEAK}	N 沟道, V _{DS} =24 V, Y	V _{IN} =15 V		_	0.1	μΑ	
V_{HYS}	_		0.085		0.215	V	2
I _{SS}	V _{IN} =7 V,无负载			4	8	μΑ	5
	$\begin{array}{c} V_{OUT} \\ V_{dif} \\ \Delta V_{OUT1} \\ \Delta V_{OUT2} \\ \hline V_{IN} \\ \hline \Delta Ta \\ \\ \hline V_{opr} \\ t_{pd} \\ \hline \Delta + V_{DET} \\ \Delta Ta \\ \\ + V_{DET} \\ \hline I_{DOUT} \\ \\ \\ I_{LEAK} \\ V_{HYS} \\ \end{array}$	VOUT VIN=7 V, IOUT=30 m Vdif IOUT=30 mA ΔVOUT1 VIN=6 ~ 24 V, IOUT=50 µA ΔVOUT2 VIN=7 V, IOUT=50 µA VIN — ΔVOUT ΔΤα VIN=7 V, IOUT=30 m Ta=-40 °C ~ +85°C Vopr Ta=-40 °C ~ +85°C Δ+ VDET ΔΤα Ta=-40 °C ~ +85°C +VDET Ta=-40 °C ~ +85°C IDOUT N 沟道, VDS=0.5 V	V _{OUT} V _{IN} =7 V, I _{OUT} =30 mA V _{dif} I _{OUT} =30 mA ΔV _{OUT1} V _{IN} =6 ~ 24 V, I _{OUT} =30 mA ΔV _{OUT2} V _{IN} =7 V, I _{OUT} =50 μA ~ 40 mA V _{IN} — ΔV _{OUT} V _{IN} =7 V, I _{OUT} =30 mA, Ta=-40 °C ~ +85 °C V _{opr} — t _{pd} C _D =4.7 nF Δ+ V _{DET} — I _{DOUT} N 沟道, V _{DS} =0.5 V V _{IN} =1.3 V V _{IN} =2.4 V V _{IN} =3.6 V I _{LEAK} N 沟道, V _{DS} =24 V, V _{IN} =15 V V _{HYS} —	V _{OUT} V _{IN} =7 V, I _{OUT} =30 mA 4.88 V _{dif} I _{OUT} =30 mA — ΔV _{OUT1} V _{IN} =6 ~ 24 V, I _{OUT} =30 mA — ΔV _{OUT2} V _{IN} =7 V, I _{OUT} =50 μA ~ 40 mA — V _{IN} — — ΔV _{OUT} V _{IN} =7 V, I _{OUT} =30 mA, Ta=-40 °C ~ +85 °C — V _{opr} — 1.3 t _{pd} C _D =4.7 nF 15 Δ+ V _{DET} Ta=-40 °C ~ +85 °C — +V _{DET} — 8.600 I _{DOUT} N 沟道, V _{DS} =0.5 V V _{IN} =1.3 V 0.25 V _{IN} =2.4 V 1.50 V _{IN} =3.6 V 3.00 I _{LEAK} N 沟道, V _{DS} =24 V, V _{IN} =15 V — V _{HYS} — 0.085	符号 条件 最小値 典型値 V _{OUT} V _{IN} =7 V, I _{OUT} =30 mA 4.88 5.00 V _{dif} I _{OUT} =30 mA — 0.15 ΔV _{OUT1} V _{IN} =6 ~ 24 V, I _{OUT} =30 mA — 15 ΔV _{OUT2} V _{IN} =7 V, I _{OUT} =50 μA ~ 40 mA — 15 V _{IN} — — — ΔV _{OUT} ΔTa V _{IN} =7 V, I _{OUT} =30 mA, Ta=-40 °C ~ +85 °C — ±0.38 V _{opr} Ta=-40 °C ~ +85 °C — ±0.38 V _{DET} Ta=-40 °C ~ +85 °C — ±0.7 +V _{DET} Ta=-40 °C ~ +85 °C — ±0.7 +V _{DET} Ta=-40 °C ~ +85 °C — ±0.7 +V _{DET} Ta=-40 °C ~ +85 °C — ±0.7 +V _{DET} Ta=-40 °C ~ +85 °C — ±0.7 +V _{DET} Ta=-40 °C ~ +85 °C — ±0.7 +V _{DET} Ta=-40 °C ~ +85 °C — ±0.7 +V _{DET} Ta=-40 °C ~ +85 °C — ±0.7 +V _{DET} Ta=-40 °C ~ +85 °C — ±0.7 +V _{DET} Ta=-40 °C ~ +85 °C — ±0.7 +V _{DET} Ta=-40 °C ~ +85 °C — ±0.7 +V _{DET} Ta=-40 °C ~ +85 °C	符号 条件 最小値 典型値 最大値 V _{OUT} V _{IN} =7 V, I _{OUT} =30 mA 4.88 5.00 5.12 V _{dif} I _{OUT} =30 mA — 0.15 0.40 ΔV _{OUT1} V _{IN} =6 ~ 24 V, I _{OUT} =30 mA — 15 50 ΔV _{OUT2} V _{IN} =7 V, I _{OUT} =50 μA ~ 40 mA — 15 50 V _{IN} — — — 24 ΔV _{OUT} ΔTa V _{IN} =7 V, I _{OUT} =30 mA, Ta=-40 °C ~ +85 °C — ±0.38 ±1.52 V _{opr} Ta=-40 °C ~ +85 °C — ±0.38 ±1.52 V _{opr} Ta=-40 °C ~ +85 °C — ±0.7 ±2.8 +V _{DET} Ta=-40 °C ~ +85 °C — ±0.7 ±2.8 +V _{DET} Ta=-40 °C ~ +85 °C — ±0.7 ±2.8 +V _{DET} Ta=-40 °C ~ +85 °C — ±0.7 ±2.8 +V _{DET} Ta=-40 °C ~ +85 °C — ±0.7 ±2.8 +V _{DET} Ta=-40 °C ~ +85 °C — ±0.7 ±2.8 +V _{DET} Ta=-40 °C ~ +85 °C — ±0.7 ±2.8 +V _{DET} Ta=-40 °C ~ +85 °C — ±0.7 ±0.7 ±0.7	VOUT VIN=7 V, IOUT=30 mA 4.88 5.00 5.12 V Vdif IOUT=30 mA — 0.15 0.40 ΔVOUT1 VIN=6 ~ 24 V, IOUT=30 mA — 15 50 mV ΔVOUT2 VIN=7 V, IOUT=50 µA ~ 40 mA — 15 50 mV VIN — — — 24 V ΔVouT ΔTa VIN=7 V, IOUT=30 mA, Ta=-40 °C ~ +85 °C — ±0.38 ±1.52 mV/°C Vopr ΔTa — — 1.3 — 24 V tpd CD=4.7 nF 15 27 41 ms Δ+VDET ΔTa Ta=-40 °C ~ +85 °C — ±0.7 ±2.8 mV/°C +VDET — 8.600 8.700 8.800 V IDOUT N 沟道, VDS=0.5 V VIN=1.3 V 0.25 0.60 — mA VIN=2.4 V 1.50 2.60 — VIN=3.6 V 3.00 4.50 — IDOUT N 沟道, VDS=24 V, VIN=15 V

^{*1.} t_{pd} (ms)=(3.18 (最小值)、5.74 (典型值)、8.73 (最大值))×C_D (nF) *2. 除 C_D 的充电电流以外。

■ 测定电路

1.

2.

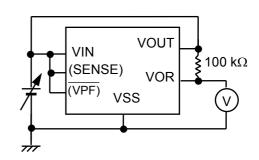
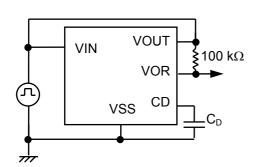



图 8

图 9

3.

4.

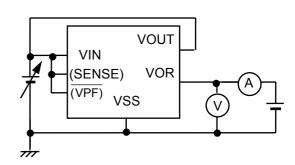
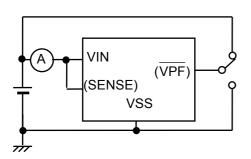



图 10

图 11

5.

6.

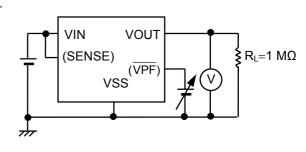


图 12

图 13

7.

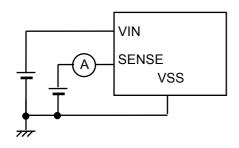
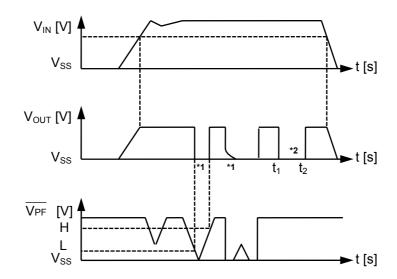
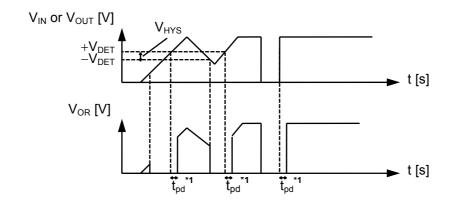



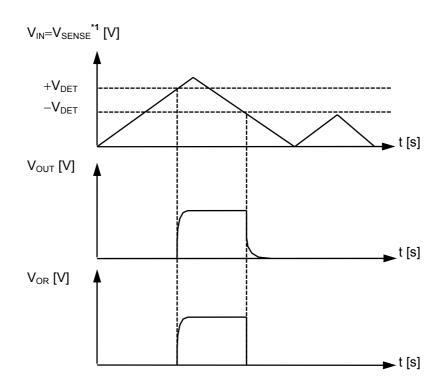
图 14

■ 工作时序图


1. 电压稳压器 (C/G型)

- *1. 表示处于电源关闭的状态下。但是,在输出电流较小时(I_{OUT} <1 μA),输出电压(V_{OUT})有可能不能变为 V_{SS} 电位。
- *2. 在 t_1 处,若将 V_{OUT} 短路, V_{OUT} 变为 V_{SS} 电位。在 t_2 处,若解除这个短路, V_{OUT} 恢复到正常状态。

图 15


2. 电压检测器 (A/B/F型)

- *1. 电压检测器的输出延迟时间(t_{pd}),可利用连接到 CD 端子的外接容量值来改变时间。C/E/G 型产品不备有延迟时间。
- 备注 V_{OR}可通过电阻上拉至 V_{IN}或 V_{OUT}。

图 16

3. 使用 SENSE 端子时 (E 型)

*1. SENSE 端子连接到 VIN 端子。 **备注** V_{OR} 可通过电阻上拉至 V_{OUT}。

图 17

■ 用语说明

1. 输入输出电压差 (V_{dif})

 $V_{dif} = V_{IN1} - V_{OUT1}$

V_{OUT1}: 初始的输出电压值

V_{IN1}: 输入电压,可产生从 V_{OUT1}减少 5 %之后的输出电压值(V_{OUT2})

2. 负载稳定度 (ΔV_{OUT2})

 $\Delta V_{OUT2} = V_{OUT1} - V_{OUT2}$

V_{OUT1}: I_{OUT}=50 μA 的输出电压 V_{OUT2}: I_{OUT}=40 mA 的输出电压

3. 输入稳定度 (ΔV_{OUT1})

 $\Delta V_{OUT1} = V_{OUT1} - V_{OUT2}$

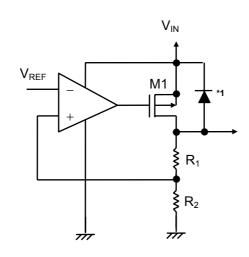
V_{OUT1}: V_{IN}=24 V 的输出电压 V_{OUT2}: V_{IN}=(V_{OUT}+1) V 的输出电压

4. 滞后幅度 (V_{HYS})

V_{HYS}=(+V_{DET})-(-V_{DET}) +V_{DET}: 解除电压 -V_{DET}: 检测电压

■ 工作说明

1. 基准电压源


通过对VIN端子施加电压,则无论 VPF 信号如何,都会进行正常的工作。

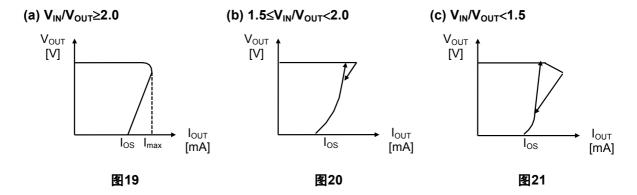
2. 电压稳压器

电压稳压器的电路如图18所示。输出控制晶体管使用P沟道MOS晶体管。

在控制晶体管的结构上,因为在 V_{IN} – V_{OUT} 之间存在着寄生二极管,所以,如果 V_{OUT} 的电位高于 V_{IN} ,有可能因反向电流而导致IC的破损。因此,请控制 V_{OUT} \leq V_{IN} +0.3 V_{out}

在2.5 V~5.8 V±2.4%的范围内,可以0.1 V为进阶单位来选择电压稳压器的输出电压。

*1. 寄生二极管


图18 电压稳压器电路

注意 在输出电流不足 1 µA 的应用电路中,由于控制晶体管 M1 的泄漏电流,输出电压会上升。

3. 短路保护电路

为了防止在短路时,因大电流而导致元件的破损,内置了短路保护电路。其输出的短路电流大约为70 mA,设置于内部。因输入电压 (V_{IN}) 的不同,如**图19~21**所示,短路保护电路具有3种特性。

5 V输出时

4. 延迟电路

在VIN端子启动上升、VIN端子的电压变为检测电压电路的解除电压(+V_{DET})时,延迟电路会延迟地输出检测电压输出(V_{OR})。

在**图22**所示的条件下,若CD端子电压(V_{cd})超过了基准电压(V_{ref}), V_{OR} 的输出电压端子就会从"L"电位变为 "H"电位,并且可以得到延迟输出。此外,在 V_{IN} 降到检测电压以下时,因为N2晶体管变为ON,外接电容器(C_D)的充电电荷被急速地放电,所以不经过延迟,检测电压输出即可从"H"电位变为"L"电位。

由于外接电容器(C_D)由恒流来进行充电,因此几乎可以不依靠 V_N 电压。延迟时间(t_{cd})可按照下式计算。

 t_{pd} (ms)=延迟系数(3.18 (最小值)、5.74 (典型值)、8.73 (最大值)) \times C_D (nF)

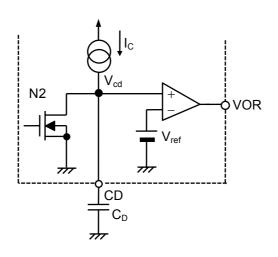


图 22

- 注意1. 在不需要延迟输出之时,请设置CD端子为开放状态。此外,请不要从外部对CD端子施加接地 电位以外的电压。反之,会导致IC的破损。
 - 2. 请避免在 CD 端子中流入泄漏电流。反之,有可能不能取得正确的延迟时间。因为恒流电源 (I_C)的值为 195 nA 左右,所以 CD 端子的阻抗会变大。因此,请注意电子线路板上的布局,避免在外接电容器(C_D)中从外部流入电流。

5. 电压检测电路

内置了相当于SII生产的S-808系列、S-809系列产品的N沟道开路漏极型的电压检测电路。在输出方必须连接100 k Ω 左右的上拉电阻。但是,由于电压检测电路中的比较器的电源是通过VIN端子来供应的,因此只要在VIN端子上施加电压即可开始工作。

在2.1~11.3 V±2.4%的范围内,可以0.1 V为进阶单位来选择电压检测器的检测电压。

F型产品的解除电压($+V_{DET}$)的精度已在内部调整为 $\pm 1.1~\%$,因此最适合使用于锂离子可充电池的过充电检测。

在E型产品中,已在外部准备好作为电压检测器的输入电压监视端子的SENSE端子。因为此端子仅由电阻构成,所以不能流入击穿电流等短时间的电流。因此,在输入电源与VIN端子之间即使已装配了电阻 (R_{IN}),通过将SENSE端子连接到输入电源,也可以对输入电源电压进行正确的监视。此外,当检测到 SENSE端子电压的下降时,电压检测器即可产生复位信号,同时关闭电压稳压器的电源。

- 注意1. 如图23 ~ 25所示,将C型产品的 V_{OR} 输出连接到 \overline{VPF} 端子上时,或者将E型产品的SENSE端子连接到VIN端子的情况下,如果在输入电源与VIN端子之间存在电阻(R_{IN}),就会发生下述的现象,务请注意。
 - (1) 在检测时,切断电压稳压器,由于负载电流被断开,在流经 R_{IN} 的电流假设为 I_{IN} 的条件下, $VIN端子的电压可上升<math>\Delta V_{IN}=I_{IN}\times R_{IN}$ 。因此,在检测之后,如果 ΔV_{IN} 超过了滞后幅度 (V_{HYS}) ,就会一直发生振荡,所以必须设置 $\Delta V_{IN}\le V_{HYS}$ 。
 - (2) 在解除时,启动电压稳压器,由于会流入负载电流,在解除之后,如果ΔV_{IN}超过了滞后幅度(V_{HYS}) ,就会一直发生振荡,所以与检测时相同,必须设置ΔV_{IN}≤V_{HYS}。此外,即使设置了ΔV_{IN}不超过V_{HYS},但在解除时,为了对输出电容器(C_{OuT})进行充电会流入突进电流,在电压稳压器的输出(V_{OUT})达到所定的电压期间内,会短时间地发生振荡。如果所产生的振荡对应用电路造成不良的影响,因为突进电流在短路保护电路中的工作电流量如图19~21所示,在I_{MAX}以下的范围内,所以通过设置R_{IN}< V_{HYS} I_{MAX},即可防止振荡的发生。

图 23 注意连接示例 1

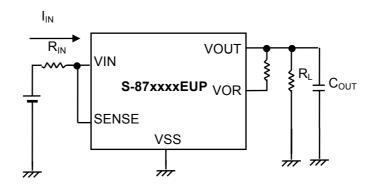
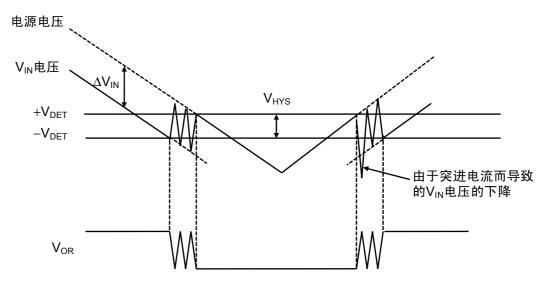



图 24 注意连接示例 2

- 2. E型产品以 V_{IN} 电压作为最低工作电压,电压值为2.0 V。在解除时,即使由于负载电流以及接通电压稳压器时对输出电容器进行充电的突进电流,而导致 V_{IN} 电压的下降,也请将 V_{IN} 电压控制在2.0 V或2.0 V以上。
- 3. 在E型产品中,SENSE端子的电位(V_{SENSE})固定在-V_{DET}≥V_{SENSE}≥-V_{DET}-2 V的范围内的检测状态时,如果仅使VIN端子的电压,以低于1 ms/V的速度急剧上升,电压检测器的输出就会释放出解除脉冲,务请注意。在这种情况下,可在VOR端子处附加电容和上拉电阻,通过将此时的参数设置在20 ms或20 ms以上,就可以排除解除脉冲。此外,在检测状态下,当SENSE端子的电位在解除电压值与检测电压值之间时,如果仅使VIN端子的电压,以低于1 ms/V的速度急剧地上升,电压检测器的输出会变为解除状态。这种现象若在系统上出现问题,请将VIN端子和SENSE端子作为共同的端子来使用。

6. 电源关闭电路 (C/E/G型)

C/G型产品的 \overline{VPF} 端子设置为"L"电位(不高于0.4 V)时,以及E型产品在进行电压检测时,电压稳压器所消耗的电流会被切断。此刻的消耗电流(除流经上拉电阻的电流以外)不能超过3.5 μA。此外,当关闭电压稳压器的电源时,如**图17**所示的M1晶体管被切断,VOUT端子由于电阻R₁、R₂而被下拉。但是,电阻R₁+R₂的值须在5~10 MΩ左右的范围内。此外, \overline{VPF} 端子的输入电流不能超过0.1 μA。

- 注意1. 电源关闭时,如果I_{OUT}连接小于1 µA的负载,输出电压有可能不能变为0 V。
 - 2. 不要将 VPF 端子设置在浮动状态,或中间电位("L"电位与"H"电位之间)。反之,会导致击穿电流的流入。

■ 过渡响应特性

如果输入电压以及负载电流发生过渡性的变动,此电压稳压器的输出电压有可能会发生下冲或过冲。当下冲较大,并利用电压检测器来检测稳压器的输出电压时,电压检测器开始工作并会输出复位信号,而过冲较大时,会给负载电路造成不良的影响。因此,重要的是要适当地设置电容器的值,而使下冲或过冲变为最小。

1. 通过输入电压的变动而产生的过渡响应特性

输入电压的变动,在施加类型 $1((V_{OUT}+1) V \leftrightarrow 10 V$ 的矩形波)时与在施加类型 2(0 V → 10 V的矩形波)时不同。下图(**参阅图 26 ~ 28**)显示各类型的振荡波形和参数依靠性。此外,作为参考可参阅**图 28** 的测定电路。

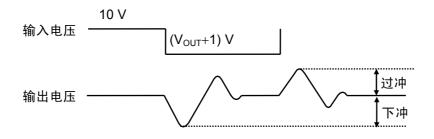
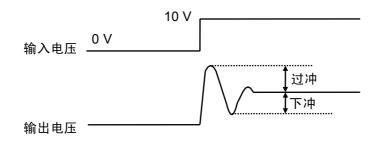
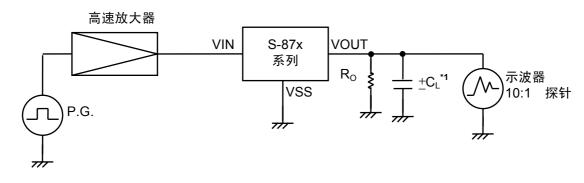
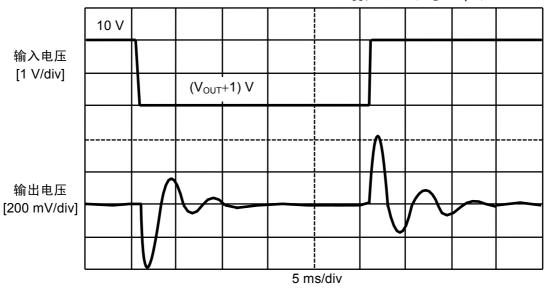




图 26 (V_{OUT}+1) V ↔ 10 V 的矩形波时(类型 1)

备注 启动上升/下降时间(10% ↔ 90%)为 1 µs。

图 27 0 V→10 V 的矩形波时(类型 2)



*1. AL 电解电容器

图 28 测定电路

类型 1 ((V_{OUT}+1) V ↔ 10 V 的矩形波)

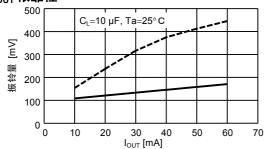
 I_{OUT} =40 mA, C_L =10 μ F, Ta=25 °C

过冲量: 350 mV 下冲量: 325 mV

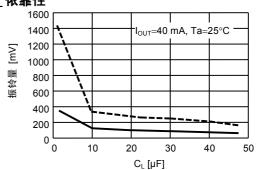
图 29 振荡波形(类型 1)

表20 参数依靠性(类型1)

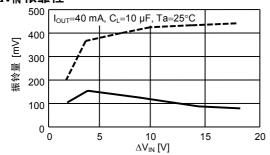
系列	参数	条件	使过冲变小 的方法	使下冲变小 的方法
S-8750xxx	输出电流(I _{OUT})	10 ~ 60 mA, C _L =10μF	使之变小	使之变小
	负载容量(CL)	$1 \sim 47 \ \mu F, I_{OUT} = 40 \ mA$	使之变大	使之变大
	输入变动量(ΔV _{IN} *1)	2 ~ 4 V	使之变小	使之变小
		4 ~ 18 V	使之变大	使之变小
	温度(Ta)	–40°C ~ +85°C	低温	低温
S-8730xxx	输出电流(I _{OUT})	$10 \sim 60 \text{ mA}, C_L=10 \mu\text{F}$	使之变大	使之变小
	负载容量(CL)	$1 \sim 47 \mu F$, $I_{OUT}=40 mA$	使之变大	使之变大
	输入变动量(ΔV _{IN} *1)	4 ~ 20 V	使之变大	使之变小
	温度(Ta)	-40°C ~ +85°C	低温	低温

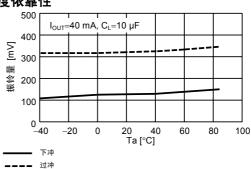

*1. 高的电压值一低的电压值

作为参考,在 V_{OUT} 处发生的振荡量,以输出负载电流(I_{OUT})、输出负载容量(C_L)、输入变动量(ΔV_{IN})以及温度(Ta)为参数而测定的结果,从下一页开始作为参考数据依次介绍。

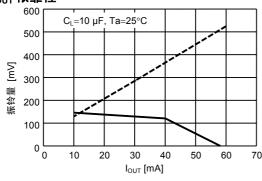

参考数据: 类型 1

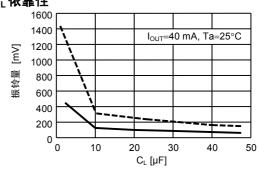
S-8750xxx 系列


1. I_{OUT} 依靠性

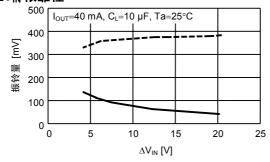

2. C ៤ 依靠性

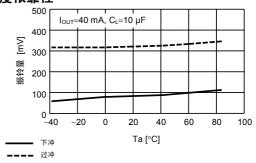
3. △V_{IN} 依靠性


4. 温度依靠性

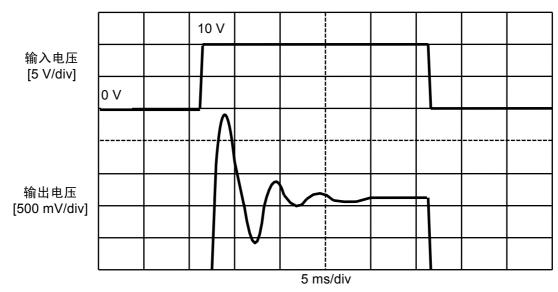

备注 较低方向的电压固定为 6 V。

S-8730xxx 系列


1. I_{OUT} 依靠性


2. C 依靠性

3. △V_{IN} 依靠性


4. 温度依靠性

备注 较低方向的电压固定为 4 V。

类型 2(0 V→10 V 的矩形波)

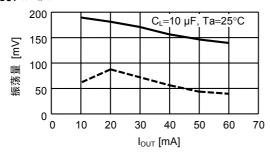
 I_{OUT} =40 mA, C_L =10 μF , Ta=25 $^{\circ}C$

过冲量: 1300 mV 下冲量: 610 mV

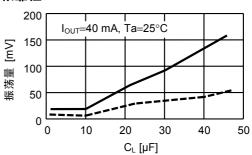
图 30 振荡波形(类型 2)

表21 参数依靠性(类型2)

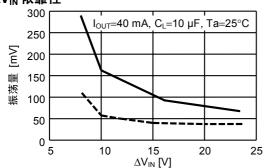
系列	参数	条件	使过冲变小 的方法	使下冲变小 的方法
S-8750xxx	输出电流(I _{OUT})	$10 \sim 60 \text{ mA}, C_L=10 \mu\text{F}$	使之变大	使之变大
	负载容量(CL)	$1 \sim 47 \ \mu F, I_{OUT} = 40 \ mA$	使之变小	使之变小
	备入变动量(ΔV _{IN} *1)	8 ~ 24 V	使之变大	使之变大
	温度(Ta)	–40°C ~ +85°C	低温	低温
S-8730xxx	输出电流(I _{OUT})	$10 \sim 60 \text{ mA}, C_L=10 \mu\text{F}$	使之变大	使之变大
	负载容量(CL)	$1 \sim 47 \ \mu F, I_{OUT} = 40 \ mA$	使之变小	使之变小
	备入变动量(ΔV _{IN} *1)	8 ~ 24 V	使之变大	使之变大
	温度(Ta)	–40°C ~ +85°C	低温	低温

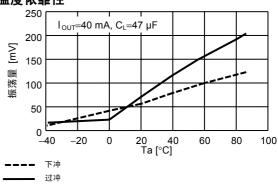

^{*1.} 高的电压值-0 V

作为参考,在 V_{OUT} 处发生的振荡量,以输出负载电流(I_{OUT})、输出负载容量(C_L)、输入变动量(ΔV_{IN})以及温度 (Ta)为参数而测定的结果,从下一页开始作为参考数据依次介绍。

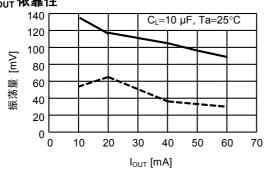

参考数据: 类型 2

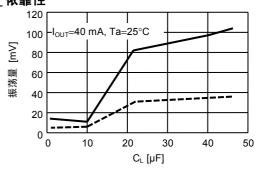
S-8750xxx 系列


1. I_{OUT} 依靠性

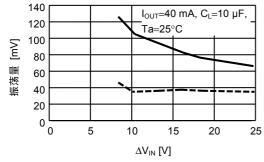

2. C_L 依靠性

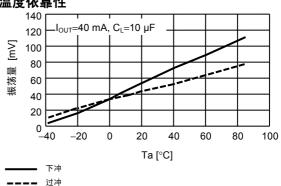
3. △V_{IN} 依靠性


4. 温度依靠性


备注 较低方向的电压固定为 0 V。

S-8730xxx 系列


1. I_{OUT} 依靠性


2. C∟依靠性

3. △V_{IN} 依靠性

4. 温度依靠性

备注 较低方向的电压固定为 0 V。

2. 通过输出电流的变动而产生的过渡响应特性

S-87x系列在输入电压为一定的条件下,使负载电流发生50 µA→40 mA的变动,即可使输出电压产生过冲、下冲。**图31**显示了通过输出电流而引起输出电压的变动的情形。作为参考显示了**图32**的测定电路。并表示了振荡波形和参数依靠性。

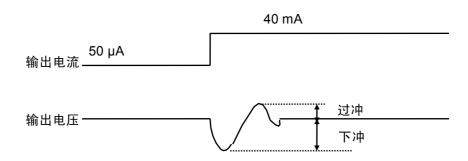
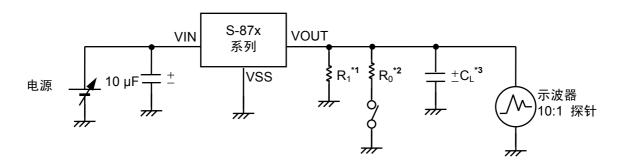
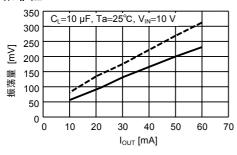



图 31 通过输出电流而引起输出电压的变动

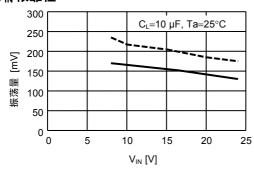
- *1. $R_1 = \frac{V_{O} \cup T[V]}{50 \, \mu A} [\Omega]$
- *2. $R_0 = \frac{V_{OUT}[V]}{40 \text{ mA}} [\Omega]$
- *3. AL 电解电容器

图 32 测定电路

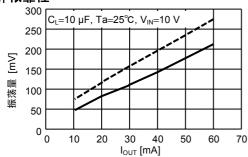

表22 通过输出电流变动的参数依靠性

系列	参数	条件	使过冲变小	使下冲变小
			的方法	的方法
S-8750xxx,	输出电流(I _{OUT})	$10 \sim 60 \text{ mA}, C_L=10 \mu\text{F}$	使之变小	使之变小
S-8730xxx	负载容量(CL)	$1 \sim 47 \ \mu\text{F}, \ I_{OUT}=40 \ \text{mA}$	使之变大	使之变大
	电源电压(V _{IN})	(V _{OUT} +1) ~ 24 V	使之变大	使之变大
	温度(Ta)	–40°C ~ +85°C	低温	低温

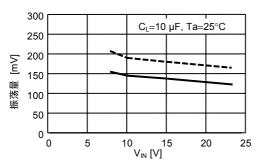
■ 参考数据


S-8750xxx 系列

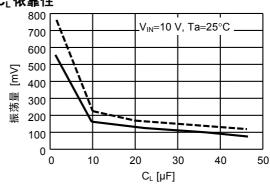
1. I_{OUT} 依靠性


备注 较低方向的电流固定为 50 μA。

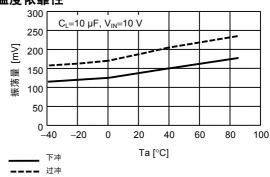
3. △V_{IN} 依靠性

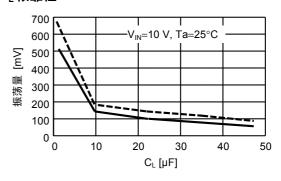

S-8730xxx 系列

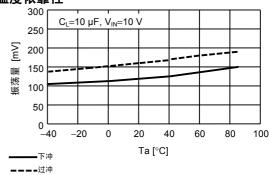
1. I_{OUT} 依靠性



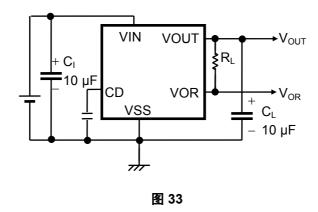
备注 较低方向的电流固定为 50 μA。


3. △V_{IN} 依靠性

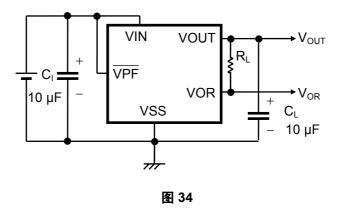

2. C ៤ 依靠性


4. 温度依靠性

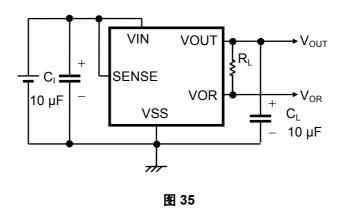
2. C_L依靠性



4. 温度依靠性

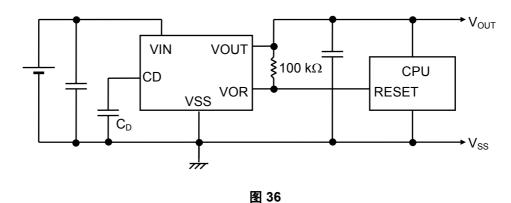


■ 标准电路


1. A/B/F 型

2. C/G 型

3. E型

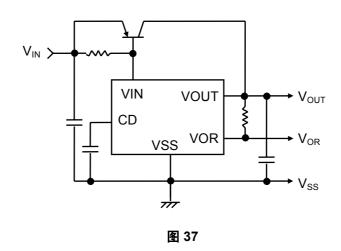


注意 上述连接图以及参数仅供参考,并不作为保证电路工作的依据。请在进行充分的实测基础上,设定 实际的应用电路的参数。

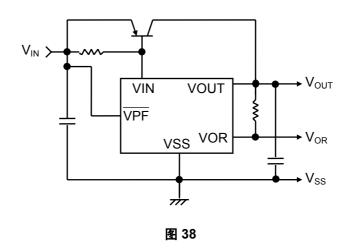
■ 应用电路示例

1. 微机等的电源以及复位电路

微机等的电源以及复位电路利用以往的 IC 来构成时,需要电压稳压器、电压检测器以及延迟时间制作用电路等。若使用 A/B 型产品,不需要此类的 IC 即可构成电路,而且可以改变延迟时间。

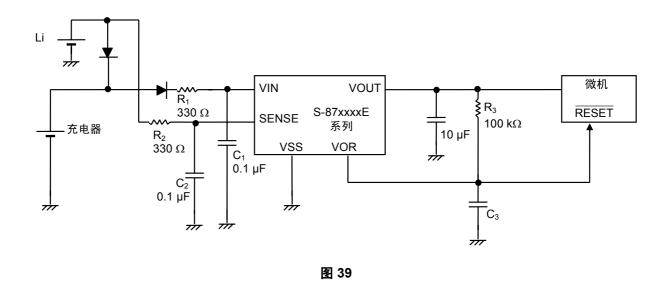


注意 上述连接图以及参数仅供参考,并不作为保证电路工作的依据。请在进行充分的实测基础上, 设定实际的应用电路的参数。


2. 电流的高输出化

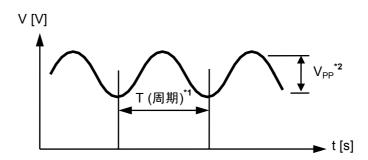
利用 PNP 晶体管可增加输出电流容量。

1. A/B 型


2. C/G 型

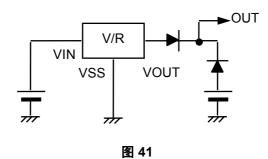
注意 上述连接图以及参数并不作为保证电路工作的依据。实际的应用电路请在进行充分的实测基础上设定参数。

3. 锂离子电池组用电源


锂离子电池的电压在过放电电压以下时,内置的电压检测器可关闭电压稳压器的电源,并同时往微机 传送出复位信号。此外, R_1 、 C_1 以及 R_2 、 C_2 是为了排除来自充电器的超过绝对最大额定值的电压而准备的。 C_3 在电压解除时使微机的复位信号延迟,在输往微机的电源(V_{OUT})上升之后,为了解除复位而准备的。

注意 上述连接图以及参数仅供参考,并不作为保证电路工作的依据。请在进行充分的实测基础上,设 定实际的应用电路的参数。

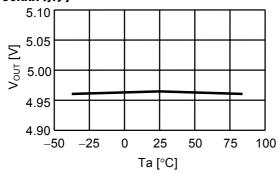
■ 注意事项


• 请不要对 VIN 端子施加没有满足以下所有条件的纹波电压。

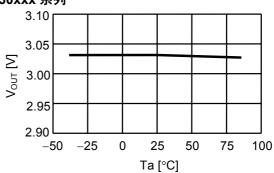
- *1. f≥1000 Hz (f=1/T)(f 表示频率。)
- ***2.** V_{PP}≥0.5 V

图 40

• 电压稳压器部位的输出端子要与其他电源相连接时,为了保护 IC,请配置二极管。

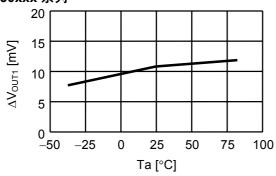

• 本IC 虽内置了防静电保护电路,但请不要对IC 施加超过保护电路性能的过大静电。

■ 各种特性数据(典型数据)

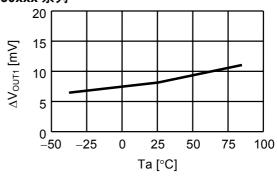

1. 电压稳压器

(1) 输出电压(V_{OUT})-温度(Ta)特性

S-8750xxx 系列

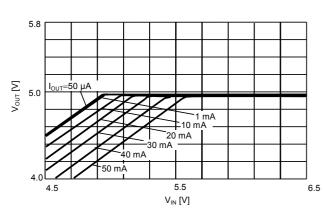


S-8730xxx 系列

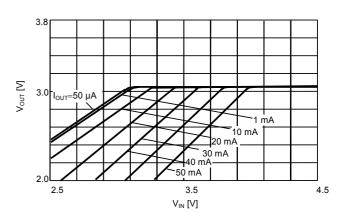


(2) 输入稳定度(ΔV_{OUT1})-温度(Ta)特性

S-8750xxx 系列

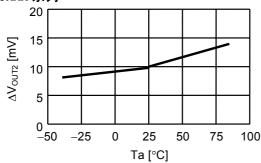


S-8730xxx 系列

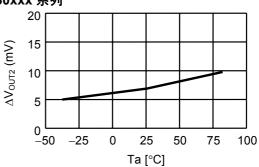


(3) 输入电压(V_{IN})-输出电压(V_{ОUТ})特性

S-8750xxx 系列

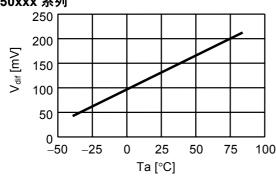


S-8730xxx 系列

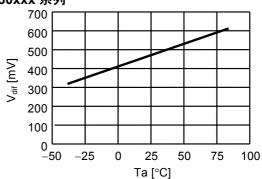


(4) 负载稳定度(ΔV_{OUT2})-温度(Ta)特性

S-8750xxx 系列

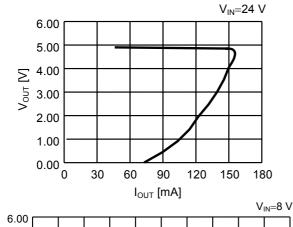


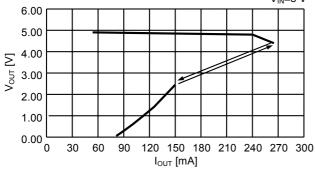
S-8730xxx 系列

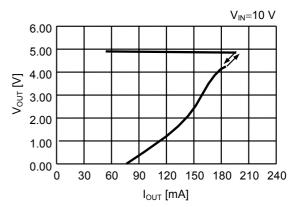


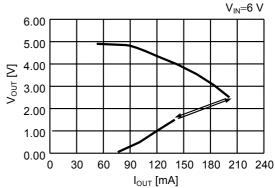
(5) 输入输出电压差(V_{dif})-温度(Ta)特性

S-8750xxx 系列

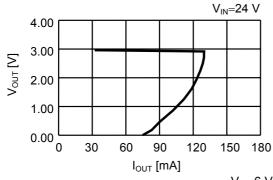


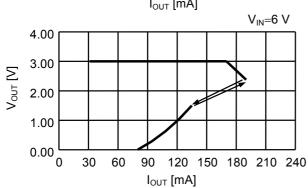

S-8730xxx 系列

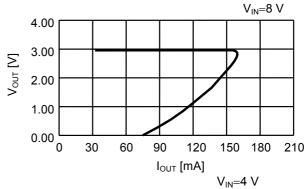


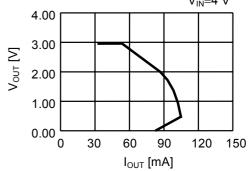

(6) 短路保护电路特性

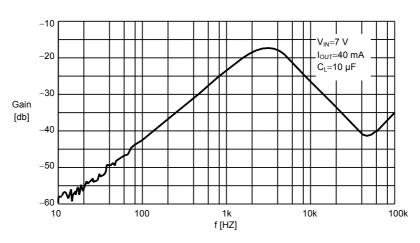
S-8750xxx 系列(Ta=25°C)

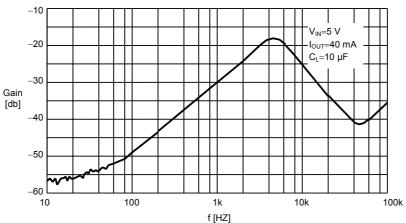






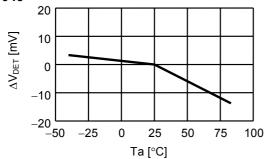

S-8730xxx 系列(Ta=25°C)

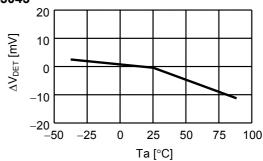

S-8730xxx 系列



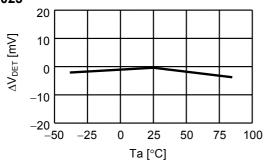
(7) 纹波抑制率特性

S-8750xxx 系列


S-8730xxx 系列

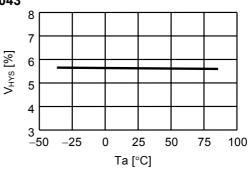

2. 电压检测器

(1) 检测电压(V_{DET})一温度(Ta)特性

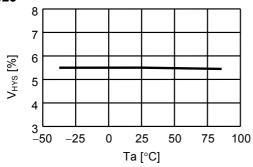

S-875045

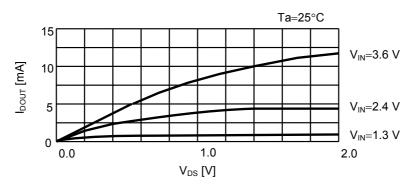
S-875043

S-873023

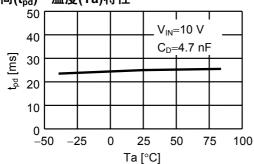


(2) 滞后幅度(V_{HYS})-温度(Ta)特性


S-875045


S-875043

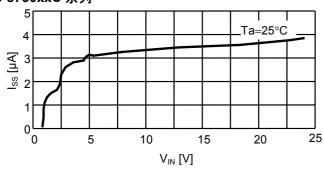
S-873023



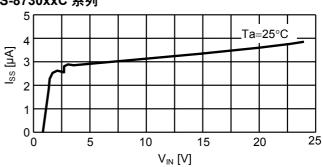
(3) N 沟道晶体管输出电压(IDOUT)特性

(4) 延迟时间(tpd)特性

延迟时间(t_{pd})一温度(Ta)特性

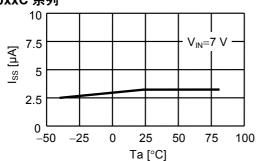


3. 综合

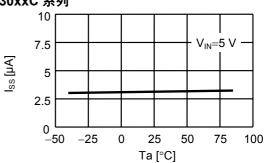

(1) 消耗电流(Iss)特性

(a) 输入电压(V_{IN})特性

S-8750xxC 系列

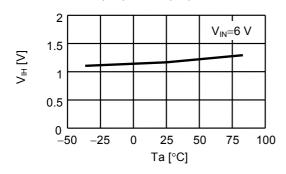


S-8730xxC 系列

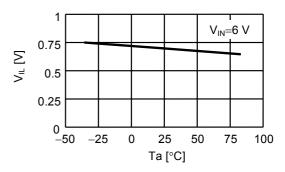


(b) 消耗电流(I_{SS})一温度(Ta)特性

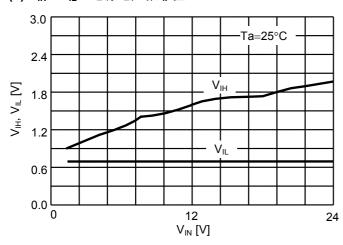
S-8750xxC 系列

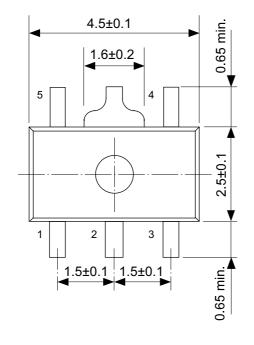


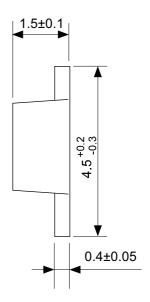
S-8730xxC 系列

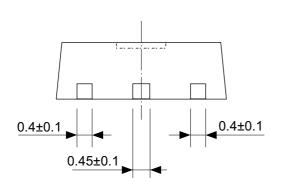


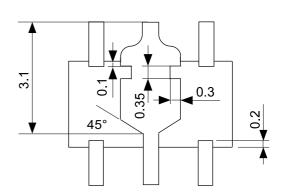
(2) 电源关闭电路的输入电压特性

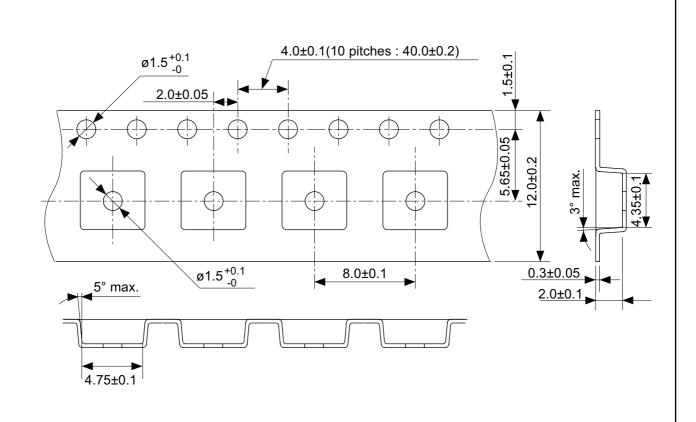

(a) "H"电位输入电压(V_{IH})一温度(Ta)特性

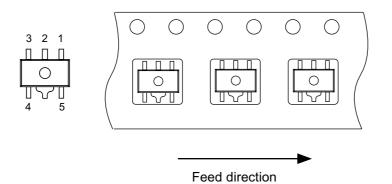



(b) "L"电位输入电压(V_{IL})一温度(Ta)特性

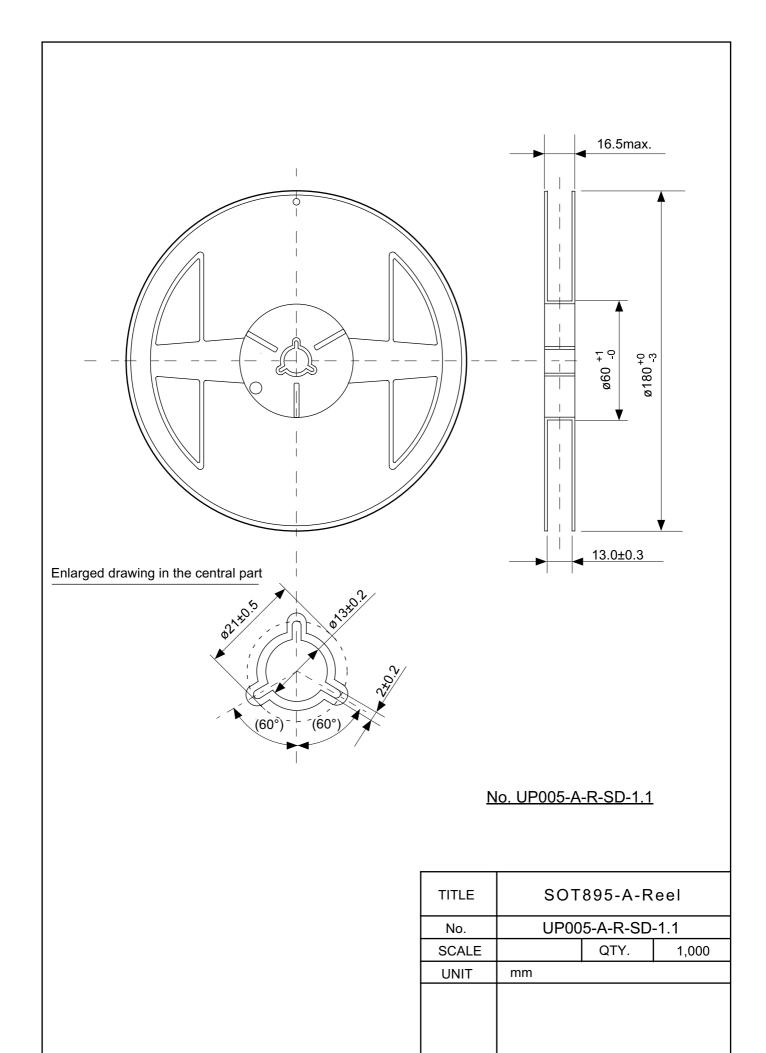



(c) V_{IH}、V_{IL}一电源电压依靠性





No. UP005-A-P-SD-1.1


TITLE	SOT895-A-PKG Dimensions			
No.	UP005-A-P-SD-1.1			
SCALE				
UNIT	mm			
Seiko Instruments Inc.				

No. UP005-A-C-SD-1.1

TITLE	SOT895-A-Carrier Tape		
No.	UP005-A-C-SD-1.1		
SCALE			
UNIT	mm		
Seiko Instruments Inc.			

Seiko Instruments Inc.

Seiko Instruments Inc.

www.sii-ic.com

- 本资料内容,随着产品的改进,可能会有未经预告的更改。
- 本资料所记载的设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外,应用电路示例为产品的代 表性应用说明,并非保证批量生产的设计。
- 本资料所记载产品,如属外汇交易及外国贸易法中规定的限制货物(或劳务)时,基于该法律规定,需得到日本国政府的 出口许可。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载的产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、航空 器械及车载器械等对人体产生影响的器械或装置部件使用。
- 本资料所记载的产品,非耐放射线设计产品。
- 本公司致力于提高质量与信赖性,但是半导体产品有可能会有一定的概率产生故障或误工作。为防止因故障或误工作而产 生的人身事故、火灾事故、社会性损害等,请注意冗长设计、火势蔓延对策设计、防止误工作设计等安全设计。