CXA2020M/S

EIAJ Sound Multiplexing Decoder

Description

The CXA2020M/S, is a bipolar IC designed as EIAJ TV sound multiplexing decoder, provides various functions including sound multiplexing demodulation, broadcast mode identification (stereo/bilingual discrimination display), mode display, and muting.

Features

- Adjustment free of filter.
- High frequency stereo separation improved.
- An internal active filter greatly reduces the external parts.
- Use of the countdown method for broadcast mode identification eliminates the necessity of adjusting the identification system (Cue oscillator).
- Output level: 520 mVrms (1 kHz , monaural, 100%).
- Internal filter eliminates interference from digital facsimile signals.
- The discrimination time needed to shift from multiplexing sound to monaural sound is reduced.
- Forced monaural mode can be set to operate only for stereo broadcasts or for stereo/bilingual broadcasts.

Applications

- Color TVs
- Hi-Fi VCRs

Structure

Bipolar silicon monolithic IC

Pin Configuration CXA2020M

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

[() is the pin No. for the CXA2020S.]

- Supply voltage Vcc 10 V
- Input signal (Pin 6) Vis 0.6 Vp-p
- Control voltage
(Pins 5, 12, 13, 14) Vic Vcc V
- Operating temperature Topr -20 to $+75 \quad{ }^{\circ} \mathrm{C}$
- Storage temperature Tstg -65 to $+150 \quad{ }^{\circ} \mathrm{C}$
- Allowable power dissipation

Pd (A2020M) 1000 mW (A2020S) 900 mW
-LED drive current ILed 10 mA
Operating Supply Voltage Range 8.5 to 9.5 V

[^0]
Block Diagram

CXA2020M

CXA2020S

Pin Description ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=9 \mathrm{~V}$)

PIn No.		Symbol	Pin voltage	Equivalent circuit	Description
SOP	SDIP				
1	1	GND	0		GND.
$\begin{gathered} 2 \\ 5 \\ 8 \\ 10 \\ 14 \\ 15 \\ 24 \\ 27 \end{gathered}$	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	NC	-	-	Keep these pins open. (They are not connected to the chip.)
3	3	REFL	1.2 V		The noise elimination filter connection of internal reference voltage.
4	4	Vcc	-		Power supply.
6	5	MO MODE	-	(6)	Forced monaural mode selection. When Low or open, the forced monaural mode operates for stereo broadcasts only; if High, the forced monaural mode operates for both stereo and bilingual broadcasts.
7	6	MPXIN	4.1V		Sound multiplexing signal input. Typical input level $=70 \mathrm{mV} \mathrm{rms}$ (monaural, 100\%)
9	8	CUBI	4.1V		Bias capacitor connection of Cue pulse generator.

Pin	No.				
SOP	SDIP		voltage	quivalent circur	(
11	9	LEDST			
12	10	LEDSU	-		Pin 11 (9): stereo Pin 12 (10): sub Pin 13 (11): main
13	11	LEDM			
16	12	MODE	-		DC voltage-based output mode switch for bilingual broadcasts.
17	13	MUTE	-		Output muting. When High, only DC is output from Pins 19, 20 and 21 (15,16 and 17).
18	14	FOMO	-		Forced monaural. When High, forced monaural (main sound) mode is selected and the LED turns off.
19	15	MOUT	4.1V		Main signal output. Always outputs the main signal component, regardless of the broadcast mode.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Pin No.} \& \multirow[b]{2}{*}{Symbol} \& \multirow[t]{2}{*}{Pin voltage} \& \multirow[b]{2}{*}{Equivalent circuit} \& \multirow[b]{2}{*}{Description} \\
\hline SOP \& SDIP \& \& \& \& \\
\hline 20 \& 16 \& ROUT \& 4.1V \& \& R-ch output. \\
\hline 21 \& 17 \& LOUT \& 4.1V \& \& \begin{tabular}{l}
L-ch output. \\
During "TEST", the Cue signal component passed through the Cue BPF is output.
\end{tabular} \\
\hline 22

23 \& 18 \& MCIN
MCOUT \& 4.1 V

3.4 V \& \& DC cut capacitor connection of main signal.

\hline 25

26 \& 20 \& SCIN

SCOUT \& 4.1 V

3.9 V \& \& DC cut capacitor connection of sub signal.

\hline 28 \& 22 \& SUBI \& 4.1V \& \& Bias capacitor connection of sub FM detector. "TEST" mode, used for filter adjustment, is activated by grounding this pin.

\hline
\end{tabular}

Electrical Characteristics Measurement Circuit (CXA2020M)

Electrical Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=9 \mathrm{~V}$) The pin numbers in parentheses are for the CXA2020S.

No.	Item	Symbol	$\begin{array}{\|c\|} \hline \text { SW } \\ \text { condi- } \\ \text { tions } \end{array}$	Bias conditions	Conditions	$\begin{array}{\|c\|} \hline \text { Measure- } \\ \text { ment } \\ \text { point } \end{array}$	Min.	Typ.	Max.	Unit
1	Current consumption	Icc	1	1	Measure current input to Pin 4	Pin 4	17	25	36	mA
2	Sub output level 400 Hz	Vs1	4	$\begin{gathered} 2 \\ \text { and } \\ 3 \end{gathered}$	Input signal: SIG1 Measure output amplitude (400 Hz , sine wave) of Pins 20 and 21 (16 and 17): Vs1 (15kLPF)	Pins 20 and 21 (16 and 17) ${ }^{* 1}$	480	580	690	mVrms
3	Sub frequency characteristics 1 kHz	Fs1	4	$\begin{gathered} 2 \\ \text { and } \\ 3 \end{gathered}$	Input signal: SIG2 Measure output amplitude (1 kHz , sine wave) of Pins 20 and 21 (16 and 17): Vs2 $F s 1=20 \log \frac{V s 2}{V s 1}$ (15kLPF)	Pins 20 and 21 (16) and 17) *1	-1.6	-0.6	0	dB
4	Sub frequency characteristics 10kHz	Fs2	4	$\begin{gathered} 2 \\ \text { and } \\ 3 \end{gathered}$	Input signal: SIG3 Measure output amplitude (10 kHz , sine wave) of Pins 20 and 21 (16 and 17): Vs3 $\mathrm{Fs} 2=20 \log \frac{\mathrm{Vs} 3}{\mathrm{Vs} 1}$ (15kLPF)	Pins 20 and 21 (16) and 17) *1	-19.0	-16.5	-14.0	dB
5	Sub distortion	Ds	4	$\begin{array}{\|c} 2 \\ \text { and } \\ 3 \end{array}$	Input signal: SIG2 Measure distortion of output signal (1kHz, sine wave) of Pins 20 and 21 (16 and 17) (15kLPF)	Pins 20 and 21 (16 and 17) *1	-	1	2	\%
6	Sub S/N ratio	Ns	4	$\begin{gathered} 2 \\ \text { and } \\ 3 \end{gathered}$	Input signal: SIG2 Measure S / N ratio of output (1 kHz) of Pins 20 and 21 (16 and 17) (15kLPF, RMS)	Pins 20 and 21 (16 and 17) ${ }^{* 1}$	59	64	-	dB
7	Stereo distortion L-ch	Dstl	4	2	Input signal: SIG4 Measure distortion of output signal (1 kHz , sine wave) of Pin 21 (17) (15kLPF)	$\begin{array}{\|l} \operatorname{Pin} 21 \\ (17) \end{array}$	-	0.2	1.5	\%
8	Stereo distortion R-ch	Dstr	4	2	Input signal: SIG5 Measure distortion of output signal (1 kHz , sine wave) of Pin 20 (16) (15kLPF)	$\begin{aligned} & \operatorname{Pin} 20 \\ & (16) \end{aligned}$	-	0.2	1.5	\%

*1 When bias condition is " 3 ", measurement point is Pin 20 only.

No.	Item	Symbol	SW conditions	Bias condi tions	Conditions	Measurement point	Min.	Typ.	Max.	Unit
9	Stereo output level L-ch 1kHz	Vstl	4	2	Input signal: SIG4 Measure output amplitude (1 kHz , sine wave) of Pin 21 (17) (15kLPF)	$\begin{array}{\|l} \operatorname{Pin} 21 \\ (17) \end{array}$	440	540	640	mVrms
10	Stereo output level R-ch 1kHz	Vstr	4	2	Input signal: SIG5 Measure output amplitude (1 kHz , sine wave) of Pin 20 (16) (15kLPF)	$\text { Pin } 20$ (16)	440	540	640	mVrms
11	Main output level MAIN OUT	Vm1	4	2	Input signal: SIG6 Measure output signal (400 Hz , sine wave) of Pin 19 (15) (15kLPF)	$\text { Pin } 19$ (15)	480	580	690	mVrms
12	Main output level	Vm2	4	2	Input signal: SIG6 Measure amplitude of output signal (400 Hz , sine wave) of Pins 20 and 21 (16 and 17) (15kLPF)	Pins 20 and 21 (16 and 17)	480	580	690	mVrms
13	Main frequency characteristics 1 kHz	Fm1	4	2	Input signal: SIG7 Measure output amplitude (1 kHz , sine wave) of Pins 20 and 21 (16 and 17): Vm3 $\mathrm{Fm} 1=20 \log \frac{\mathrm{Vm} 3}{\mathrm{Vm} 2}$ (15kLPF)	Pins 20 and 21 (16 and 17)	-1.6	-0.6	0	dB
14	Main frequency characteristics 10 kHz	Fm2	4	2	Input signal: SIG8 Measure output amplitude (10 kHz , sine wave) of Pins 20 and 21 (16 and 17): Vm4 Fm2 $=20 \log \frac{\mathrm{Vm} 4}{\mathrm{Vm} 2}$ (15kLPF)	Pins 20 and 21 (16 and 17)	-16.0	-14.0	-12.0	dB
15	Main distortion MAIN OUT	Dm1	4	2	Input signal: SIG7 Measure distortion of output signal (1 kHz , sine wave) of Pin 19 (15) (15kLPF)	Pin 19 (15)	-	0.2	1	\%

No.	Item	Symbol	$\begin{array}{\|c\|} \hline \text { SW } \\ \text { condi- } \\ \text { tions } \end{array}$	Bias conditions	Conditions	Measurement point	Min.	Typ.	Max.	Unit
16	Main distortion	Dm2	4	2	Input signal: SIG7 Measure distortion of output signal (1 kHz , sine wave) of Pins 20 and 21 (16 and 17) (15kLPF)	Pins 20 and 21 (16 and 17)	-	0.2	1	\%
17	Main distortion at maximum input	Dm3	4	2	Input signal: SIG9 Measure distortion of output signal (1 kHz , sine wave) of Pins 20 and 21 (16 and 17) (15kLPF)	Pins 20 and 21 (16 and 17)	-	0.3	2	\%
18	Main S/N ratio	Nm	4	2	Input signal: SIG7 Measure S/N ratio of output signal (1 kHz) of Pins 20 and 21 (16 and 17) (15kLPF. RMS)	Pins 20 and 21 (16 and 17)	65	73	-	dB
19	Stereo separation $L \rightarrow R$	Sstr	4	2	Input signal: SIG4 Sstr = Output amplitude $20 \log \frac{\text { Pin } 21 \text { (17) }}{\text { Output amplitude }} \begin{gathered} \text { Pin } 20(16) \end{gathered}$ (dB)	Pins 20 and 21 (16 and 17)	35	45	-	dB
20	Stereo separation $R \rightarrow L$	Sstl	4	2	Input signal: SIG5 Sstl = $20 \log \frac{\begin{array}{c} \text { Output amplitude } \\ \text { Pin } 20(16) \end{array}}{\begin{array}{c} \text { Output amplitude } \\ \text { Pin } 21(17) \end{array}}$ (dB) (15kLPF)	Pins 20 and 21 (16 and 17)	35	45	-	dB
21	Cross talk $\text { MAIN } \rightarrow \text { SUB }$	Cms1	2	2	Input signal: SIG15 Calculate the level difference between the output amplitude of Pins 20 and 21 (16 and 17) (Vms1) and the measured value (Vm3) in measurement No. 13 $\mathrm{Cms} 1=20 \log \frac{\mathrm{Vm} 3}{\mathrm{Vms} 1}(\mathrm{~dB})$ (15kLPF, 1kBPF)	Pins 20 and 21 (16 and 17)	55	58	-	dB

No.	Item	Symbol	SW condi- tions	Bias conditions	Conditions	Measurement point	Min.	Typ.	Max.	Unit
22	Cross talk $\text { SUB } \rightarrow \text { MAIN }$	Csm1	2	1	Input signal: SIG2 Calculate the level difference between the output amplitude of Pins 20 and 21 (16 and 17) (Vsm1) and the measured value (Vs2) in measurement No. 3. $\mathrm{Csm} 1=20 \log \frac{\mathrm{Vs} 2}{\mathrm{Vsm1}}(\mathrm{~dB})$ (15kLPF, 1kBPF)	Pins 20 and 21 (16 and 17)	60	70	-	dB
23	Cross talk MAIN \rightarrow SUB BOTH mode	Cms2	2	3	Input signal: SIG15 Calculate the level difference between the output amplitude of Pin 20 (16) (Vms2) and the output amplitude of Pin 21 (17) (Vms3). $\mathrm{Cms} 2=20 \log \frac{\mathrm{Vms} 3}{\mathrm{Vms} 2}(\mathrm{~dB})$ (15kLPF, 1kBPF)	Pins 20 and 21 (16 and 17)	55	58	-	dB
24	Cross talk SUB \rightarrow MAIN BOTH mode	Csm2	2	3	Input signal: SIG2 Calculate the level difference between the output amplitude of Pin 21 (17) (Vsm2) and the output amplitude of Pin 20 (16) (Vsm3). $\mathrm{Csm} 2=20 \log \frac{\mathrm{Vsm3}}{\mathrm{Vsm2}}(\mathrm{~dB})$ (15kLPF, 1kBPF)	Pins 20 and 21 (16 and 17)	60	70	-	dB
25	Residual carrier SUB	Lcs	3	2	Input signal: SIG11 Measure subcarrier component amplitude of the output of Pins 20 and 21 (16 and 17).	Pins 20 and 21 (16 and 17)	-	10	30	mVrms
26	Residual carrier MAIN	Lcm	3	1	Input signal: SIG11 Measure the subcarrier component amplitude of the output of Pins 20 and 21 (16 and 17).	Pins 20 and 21 (16 and 17)	-	12	20	mVrms
27	Mute volume MAIN	Mm	4	4	Input signal: SIG7 Calculate the level difference between the output amplitude of Pins 20 and 21 (16 and 17) (VMm) and the measured value (Vm3) in measurement No. 13. $\mathrm{Mm}=20 \log \frac{\mathrm{Vm} 3}{\mathrm{VMm}}(\mathrm{~dB})$ (15kLPF, 1kBPF)	Pins 20 and 21 (16 and 17)	70	80	-	dB

No.	Item	Symbol	$\begin{gathered} \text { SW } \\ \text { condi- } \\ \text { tions } \end{gathered}$	Bias conditions	Conditions	Measurement point	Min.	Typ.	Max.	Unit
28	Mute volume SUB	Ms	4	4	Input signal: SIG2 Caluculate the level difference between the output amplitude of Pins 20 and 21 (16 and 17) (VMs) and the measured value (Vs2) in measurement No. 3. $\mathrm{Ms}=20 \log \frac{\mathrm{Vs} 2}{\mathrm{VMs}} \quad(\mathrm{~dB})$ (15kLPF, 1kBPF)	Pins 20 and 21 (16 and 17)	70	80	-	dB
29	Mute volume stereo	Mst	4	$\begin{gathered} 2 \\ \text { and } \\ 4 \end{gathered}$	Input signals: SIG4, 5 Measure the level difference between the output signals of Pins 20 and 21 (16 and 17) under bias conditions 2 and 4. Mst = Measured value under bias $20 \log \frac{\text { condition } 2 \text { (mVrms) }}{\text { Measured value }}$ under bias condition 4 (mVrms)	Pins 20 and 21 (16 and 17) ${ }^{*}$	70	80	-	dB
30	DC offset stereo L-ch	Ost	3	$\begin{gathered} 2 \\ \text { and } \\ 4 \end{gathered}$	Input signal: SIG18 Measure the fluctuation in the output DC level of Pin 21 (17) under bias conditions 2 and 4.	$\begin{aligned} & \text { Pin } 21 \\ & (17) \end{aligned}$	-	20	100	mV
31	DC offset stereo R-ch	Ostr	3	$\begin{gathered} 2 \\ \text { and } \\ 4 \end{gathered}$	Input signal: SIG18 Measure the fluctuation in the output DC level of Pin 20 (16) under bias conditions 2 and 4.	$\begin{aligned} & \text { Pin } 20 \\ & (16) \end{aligned}$	-	20	100	mV
32	DC offset MAIN OUT	Om	3	$\begin{gathered} 2 \\ \text { and } \\ 4 \end{gathered}$	Input signal: No signal Measure the fluctuation in the output DC level of Pin 19 (15) under bias conditions 2 and 4.	Pin 19 (15)	-	20	100	mV
33	Cue detection sensitivity	$C D$	4	2	Input signal: SIG12 Change SIG12 and measure amount of attenuation at the point "monaural" switches to "Sound multiplex".	-	9	14	17	dB
34	SUB detection sensitivity	SD	4	2	Input signal: SIG13 Change SIG13 and measure amount of attenuation at the point "monaural" switches to "Sound multiplex".	-	10	13	18	dB

${ }^{*}{ }^{2}$ Measure Pin 21 for SIG4 input; Pin 20 for SIG5 input.

No.	Item	Symbol	$\begin{array}{\|c\|} \hline \text { SW } \\ \text { condi- } \\ \text { tions } \end{array}$	Bias condi- tions	Conditions	Measurement point	Min.	Typ.	Max.	Unit
35	Cue BPF gain	CG	5	2	Input signal: SIG14 Measure the output amplitude of Pin 21 (17).	$\begin{aligned} & \text { Pin } 21 \\ & (17) \end{aligned}$	330	480	620	mVrms
36	4.5fн trap attenuation level	TG	6	2	Input signal: SIG16, 17 Measure output amplitude of Pin 28 (22) and then measure the level difference in the output signal for SIG16 input and SIG17 input. $T G=$ Measured value for SIG16 (mVrms) 20log $\frac{\text { Measured value }}{\text { (mVrms }}$ for SIG17 (mVrms)	$\begin{array}{\|l} \text { Pin } 28 \\ (22) \end{array}$	20	38	-	dB

SW Condition Table

NO	1	2	3	4	5	6
1	off	off	off	off	off	off
2	off	on	off	off	off	off
3	off	off	on	off	off	off
4	on	off	off	off	off	off
5	off	off	on	on	on	off
6	off	off	on	off	on	on

BIAS Condition Table

NO	E1	E2	E3	E4	E5
1	9 V	0.5 V	0.5 V	0.5 V	0.5 V
2	9 V	4.5 V	0.5 V	0.5 V	0.5 V
3	9 V	2.5 V	0.5 V	0.5 V	0.5 V
4	9 V	4.5 V	4.5 V	0.5 V	0.5 V

Input Signal Definition

SIG1 $:$	Sound MPX signal
	Main $: 0 \%$
	Sub $: 400 \mathrm{~Hz}, 100 \%$ MOD
	Cue $\quad:$ Bilingual

SIG2 : Sound MPX signal
Main : 0\%
Sub : 1kHz, 100\% MOD
Cue : Bilingual

SIG3 : Sound MPX signal
Main : 0\%
Sub : 10kHz, 100\% MOD
Cue : Bilingual

SIG4 : Sound MPX signal
L-ch : 1kHz, 100\%
R-ch : 0\%
Cue : Stereo

SIG5 : Sound MPX signal
L-ch : 0\%
R-ch : 1kHz, 100\%
Cue : Stereo

SIG6 : Sound MPX signal
Main : 400Hz, 100\%
Sub : Carrier off
Cue : Cue signal off

SIG7 : Sound MPX signal
Main : 1kHz, 100\%
Sub : Carrier off
Cue : Cue signal off

SIG8 : Sound MPX signal
Main : 10kHz, 100\%
Sub : Carrier off
Cue : Cue signal off

SIG9 : Sound MPX signal
Main : 1kHz, 300\%
Sub : Carrier off
Cue : Cue signal off

SIG10: Sound MPX signal
L-ch : 1kHz, 100\%
R-ch : 0\%
Cue : Cue signal off

SIG11 : Sound MPX signal
Main : 0\%
Sub : 0\% (Carrier only)
Cue : Bilingual

SIG12: Sound MPX signal
Main : O\%
Sub : 0\% (Carrier only)
Cue : Bilingual (level adjusted to minimum)

SIG13 : Sound MPX signal
Main : 0\%
Sub : 0% (level adjusted to minimum)
Cue : Bilingual

SIG14: 55.069kHz sine wave
5.6 mVrms

SIG15: Sound MPX signal
Main : 1kHz, 100\%
Sub : 0\% (Carrier only)
Cue : Bilingual

SIG16: 31.47 kHz sine wave
42 mVrms

SIG17 : 70.80kHz sine wave
42 mVrms

SIG18: Sound MPX signal
L-ch : 0\%
R-ch : 0\%
Cue : Stereo

Output and LED On/Off Table

x : No response
Control Voltage Range The information in parentheses is for the CXA2020S.

		Voltage range
MODE SW Pin 16 (Pin12)	SUB	4.5 V to Vcc
	BOTH	2 V to 3V(or open)
	MAIN	0 V to 0.5 V
Forced monaural Pin 18 (Pin 14)	on	3 V to Vcc
	off	0 V to 0.5 V (or open)
MUTE Pin 17 (Pin 13)	on	3 V to Vcc
	off	0 V to 0.5 V (or open)
Forced monaural mode Pin 6 (Pin 5)	F.MAIN	3 V to Vcc
	F.MONO	0 V to 0.5 V (or open)

Description of Operation The information in parentheses is for the CXA2020S.
The sound mutiplexing signal input from Pin 7 (Pin 6) is passed through IN AMP and is applied to the Cue BPF, Sub BPF, and Main de-emphasis circuit.

1. Discrimination circuits

Cue BPF passes only the Cue signal component from the multiplex signal. In the AM demodulator, the signal (AM wave) is AM detected and one of two sine waves is generated, either a 922.5 Hz signal for bilingual broadcasts or a 982.5 Hz signal for stereo broadcasts.
In the 952 Hz BPF, the 3.5 ft carrier component is eliminated from the Cue signal after AM wave detection. The Cue signal, from which the carrier component has been eliminated, is waveform shaped by COMP, with the resulting 922.5 Hz or 982.5 Hz pulse being applied to the Logic section.
In the 3.5 ft VCO, a 3.5 ft pulse locked onto the Cue signal carrier (3.5ft) is created and sent to the Logic section.
In the Logic section, the broadcast mode is identified using the countdown method. Depending on this result as well as the presence of a SUB signal from SUB detector and the MUTE ON/OFF, MODE switching, and FOMO ON/OFF instructions from CONT, the output switching control signal is created. This signal is used to control the output condition of OUTPUT SW and MAIN OUT.
2. Main circuits

In MAIN DEEM, de-emphasis is applied to the Main signal component and the Sub and Cue components are removed.
After passing through the MAIN DEEM, the Main signal is applied to MATRIX, OUTPUT AMP, and MAINOUT.
3. Sub circuits

In SUB BPF, only the SUB signal component out of multiplex signals is passed through. In the 4.5 ft trap, the digital facsimile signal component is removed.
In FM Demod, the SUB signal is FM demodulated.
In SUB DEEM, the FM demodulated Sub signal is de-emphasized and the carrier component is removed. After passing through SUB DEEM, the Sub signal is applied to MATRIX and OUTPUT AMP.
4. MATRIX and output circuits

In MATRIX, the L and R signals are created by adding and subtracting the Main signal from MAIN DEEM and the Sub signal from SUB DEEM in stereo broadcast.
In OUTPUT AMP and OUTPUT SW, the output signal is switched under the control of Logic.
In addition, MAIN OUT always outputs the MAIN signal component, regardless of the broadcast mode.

Adjustment

Separation adjustment

Fig. 1

Procedure

1) Connect components as shown in Fig. 1. (Set SW4 to NORM.)
2) Set the encoder to stereo mode, and input a 100% modulated 1 kHz signal; also set the encoder so that only the L-ch is output.
3) Monitor the oscilloscope and AC voltmeter and adjust VR2 so that the R-ch is at a minimum.
(Separation standard: 35dB or more)

Application Circuit

CXA2020M

CXA2020S

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Example of Representative Characteristics

Cue BPF frequency characteristics

SUB BPF frequency characteristics

MAIN distortion characteristics

Package Outline

CXA2020M

PACKAGE STRUCTURE

SONY CODE	SOP-28P-L04
EIAJ CODE	$*$ SOP028-P-0375-D
JEDEC CODE	

PACKAGE MATERIAL	EPOXY / PHENOL RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	42 ALLOY
PACKAGE WEIGHT	0.7 g

CXA2020S

[^0]: Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

